Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

2018 ◽  
Vol 124 (3) ◽  
Author(s):  
Rajeev Kumar ◽  
Angad S. Kushwaha ◽  
Monika Srivastava ◽  
H. Mishra ◽  
S. K. Srivastava
Optik ◽  
2018 ◽  
Vol 172 ◽  
pp. 697-707 ◽  
Author(s):  
Angad S. Kushwaha ◽  
Anil Kumar ◽  
Rajeev Kumar ◽  
Monika Srivastava ◽  
S.K. Srivastava

2015 ◽  
Vol 34 ◽  
pp. 17-21 ◽  
Author(s):  
Goutam Mohanty ◽  
Bijay Kumar Sahoo ◽  
Jamil Akhtar

In this paper, we have studied theoretically the effect of bimetallic silver/ gold layer on sensitivity of the graphene based surface plasmon resonance (SPR) biosensor. Here, silver layer (instead of chromium and titanium) is used as an adhesive layer in between gold and BK7 glass prism. The optimized thickness of silver/gold layers reported in literature has been used for the analysis of various sensitivity parameters of the biosensor. A computational simulation is performed to analyze the nature of plasmon dip shift with respect to the addition of graphene layer and binding layer respectively.


2020 ◽  
Vol 10 (4) ◽  
pp. 340-352
Author(s):  
Sarika Pal ◽  
Alka Verma ◽  
Y. K. Prajapati ◽  
J. P. Saini

Abstract This work presents a surface plasmon resonance biosensor for the figure of merit enhancement by using Ga-doped zinc oxide (GZO), i.e., nanostructured transparent conducting oxide as plasmonic material in place of metal at the telecommunication wavelength. Two-dimentional graphene is used here as a biorecognition element (BRE) layer for stable and robust adsorption of biomolecules. This is possible due to stronger van der Waals forces between graphene's hexagonal cells and carbon-like ring arrangement present in biomolecules. The proposed sensor shows improved biosensing due to fascinating electronic, optical, physical, and chemical properties of graphene. This work analyses the sensitivity, detection accuracy, and figure of merit for the GZO/graphene SPR sensor on using the dielectric layer in between the prism and GZO. The highest figure of merit of 366.7 RIU−1 is achieved for the proposed SPR biosensor on using the nanostructured GZO at the 3000 nm dielectric thickness. The proposed SPR biosensor can be used practically for sensing of larger size biomolecules with due availability of advanced techniques for the fabrication of the nanostructured GZO and graphene.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4348
Author(s):  
Piotr Mrozek ◽  
Ewa Gorodkiewicz ◽  
Paweł Falkowski ◽  
Bogusław Hościło

Comparative analysis of the sensitivity of two surface plasmon resonance (SPR) biosensors was conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S sensor as an example. Numerically modeled resonance curves of Au and Ag–Au layers, with parameters verified by the results of experimental reflectance measurement of real-life systems, were used for the analysis of these sensors. Mutual relationships were determined between ∂Y/∂n components of sensitivity of the Y signal in the SPR measurement to change the refractive index n of the near-surface sensing layer and ∂n/∂c sensitivity of refractive index n to change the analyte’s concentration, c, for both types of sensors. Obtained results were related to experimentally determined calibration curves of both sensors. A characteristic feature arising from the comparison of calibration curves is the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range, where the signal of the AgAu sensor is at a level several times greater. It was shown that the influence of sensing surface morphology on the ∂n/∂c sensitivity component had to be incorporated to explain the features of calibration curves of sensors. The shape of the sensory surface relief was proposed to increase the sensor sensitivity at low analyte concentrations.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenqin Chen ◽  
Zhiyang Li ◽  
Wenqian Cheng ◽  
Tao Wu ◽  
Jia Li ◽  
...  

AbstractHuman epidermal growth factor receptor 2 (HER2)-positive exosomes play an extremely important role in the diagnosis and treatment options of breast cancers. Herein, based on the reformative tyramine signal amplification (TSA) enabled by molecular aptamer beacon (MAB) conversion, a label-free surface plasmon resonance (SPR) biosensor was proposed for highly sensitive and specific detection of HER2-positive exosomes. The exosomes were captured by the HER2 aptamer region of MAB immobilized on the chip surface, which enabled the exposure of the G-quadruplex DNA (G4 DNA) that could form peroxidase-like G4-hemin. In turn, the formed G4-hemin catalyzed the deposition of plentiful tyramine-coated gold nanoparticles (AuNPs-Ty) on the exosome membrane with the help of H2O2, generating a significantly enhanced SPR signal. In the reformative TSA system, the horseradish peroxidase (HRP) as a major component was replaced with nonenzymic G4-hemin, bypassing the defects of natural enzymes. Moreover, the dual-recognition of the surface proteins and lipid membrane of the desired exosomes endowed the sensing strategy with high specificity without the interruption of free proteins. As a result, this developed SPR biosensor exhibited a wide linear range from 1.0 × 104 to 1.0 × 107 particles/mL. Importantly, this strategy was able to accurately distinguish HER2-positive breast cancer patients from healthy individuals, exhibiting great potential clinical application. Graphical Abstract


2017 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Wida Yanti ◽  
Asih Melati

<p><br />Halal foods and medicines are an absolute daily needs for the Muslim community in Indonesia. Therefore the authority institutions in indonesian goverment should ensure the availability of this. It is of course inseparable from the role of higher education through the development of its technology to develop halal detection of foods and drugs. This study is an effort to contribute to the Halal Research Center of UIN Sunan Kalijaga Yogyakarta through the biosensor development in halal detection foods and medicines based on biosensor SPR. This device using graphene materials to improve the detection sensitivity of pork gelatin material that is likely contained in foodstuffs and medicine. From analytical calculation and computation, enhancement of the SPR biosensor performance by involvement graphene it was shown through the ATR (Attenuated Total Reflectance) reflective curve. The result of this results was found the enhancement of the sensitivity 2,86 %.</p><p>Keyword: Surface Plasmon Resonance (SPR), Porcine Gelatin, Graphene, ATR</p>


Sign in / Sign up

Export Citation Format

Share Document