scholarly journals Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models

2021 ◽  
Author(s):  
Marco Reale ◽  
William David Cabos Narvaez ◽  
Leone Cavicchia ◽  
Dario Conte ◽  
Erika Coppola ◽  
...  

AbstractHere, we analyze future projections of cyclone activity in the Mediterranean region at the end of the twenty-first century based on an ensemble of state-of-the-art fully-coupled Regional Climate System Models (RCSMs) from the Med-CORDEX initiative under the Representative Concentration Pathway (RCP) 8.5. Despite some noticeable biases, all the RCSMs capture spatial patterns and cyclone activity key characteristics in the region and thus all of them can be considered as plausible representations of the future evolution of Mediterranean cyclones. In general, the RCSMs show at the end of the twenty-first century a decrease in the number and an overall weakening of cyclones moving across the Mediterranean. Five out of seven RCSMs simulate also a decrease of the mean size of the systems. Moreover, in agreement with what already observed in CMIP5 projections for the area, the models suggest an increase in the Central part of the Mediterranean region and a decrease in the South-eastern part of the region in the cyclone-related wind speed and precipitation rate. These rather two opposite tendencies observed in the precipitation should compensate and amplify, respectively, the effect of the overall reduction of the frequency of cyclones on the water budget over the Central and South-eastern part of the region. A pronounced inter-model spread among the RCSMs emerges for the projected changes in the cyclone adjusted deepening rate, seasonal cycle occurrence and associated precipitation and wind patterns over some areas of the basin such as Ionian Sea and Iberian Peninsula. The differences observed appear to be determined by the driving Global Circulation Model (GCM) and influenced by the RCSM physics and internal variability. These results point to the importance of (1) better characterizing the range of plausible futures by relying on ensembles of models that explore well the existing diversity of GCMs and RCSMs as well as the climate natural variability and (2) better understanding the driving mechanisms of the future evolution of Mediterranean cyclones properties.

Author(s):  
Dario Conte ◽  
Piero Lionello ◽  
Silvio Gualdi

<p>Dynamical downscaling through coupled regional climate model plays an important role to improve climate information at regional fine-scale, since it modulates information produced by GCM, combining planetary scale processes with regional scale processes.  This study describes the impact of climate change  on rainfall over the Mediterranean region, downscaling, at two different horizontal grid resolutions (0.44 and 0.11 degs), a Global Climate Model (GCM at 0.75 degs) by means of a coupled Regional Climate System Models (RCSM). We analyze the effect of adopting model version with different horizontal resolutions (0.11, 0.44 e 0.75 degs), considering  two climate representative concentration pathways (rcp4.5 and rcp8.5). The spatial pattern on different aspects of precipitation climatology are investigated such as increase/decrease in the intensity of precipitation events, extremes and annual amount of wet days. Moreover, since the grid models cover a wide and complex climate geographic area, the rainfall probability over six sub-regions are calculated: (1) Alps, (2) North-Western coast, (2) South Italy, (3) central part of the Mediterranean sea, (4) Greece Anatolia peninsula and Levantine basin. Although, the evaluation of RCSM downscaling is complex and depends on several factors such as: variables considered, geographic area, topography, model configuration and so on, the results show that it produces an significant improvement, adding information with regards to fine-scale spatial pattern, respect to that provided by GCM.</p><p><strong>ACKNOWLEDGEMENT:</strong> This contribution is based on work conducted by the authors within the SOCLIMPACT project, that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776661. The fullname of the project is "DownScaling CLImate ImPACTs and decarbonisation pathways in EU islands, and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and Beyond". The opinions expressed are those of the author(s) only and should not be considered as representative of the European Commission’s official position.</p><p><strong>Keywords:</strong>  widespread heavy rainfall, coupled numerical models, daily rainfall, climate scenarios, climatology of heavy rainfall.</p><p> </p>


Author(s):  
Meinrat O Andreae

Looked at in a simplistic way, aerosols have counteracted the warming effects of greenhouse gases (GHG) over the past century. This has not only provided some ‘climate protection’, but also prevented the true magnitude of the problem from becoming evident. In particular, it may have resulted in an underestimation of the sensitivity of the climate system to the effect of GHG. Over the present century, the role of aerosols in opposing global warming will wane, as there are powerful policy reasons to reduce their emissions and their atmospheric lifetimes are short in contrast to those of the GHG. On the other hand, aerosols will continue to play a role in regional climate change, especially with regard to the water cycle. The end of significant climate protection by atmospheric aerosols, combined with the potentially very high sensitivity of the climate system, makes sharp and prompt reductions in greenhouse gas emissions, especially CO 2 , very urgent.


2006 ◽  
Vol 7 (5) ◽  
pp. 1076-1089 ◽  
Author(s):  
Daisuke Nohara ◽  
Akio Kitoh ◽  
Masahiro Hosaka ◽  
Taikan Oki

Abstract This study investigates the projections of river discharge for 24 major rivers in the world during the twenty-first century simulated by 19 coupled atmosphere–ocean general circulation models based on the Special Report on Emissions Scenarios A1B scenario. To reduce model bias and uncertainty, a weighted ensemble mean (WEM) is used for multimodel projections. Although it is difficult to reproduce the present river discharge in any single model, the WEM results produce more accurate reproduction for most rivers, except those affected by anthropogenic water usage. At the end of the twenty-first century, the annual mean precipitation, evaporation, and runoff increase in high latitudes of the Northern Hemisphere, southern to eastern Asia, and central Africa. In contrast, they decrease in the Mediterranean region, southern Africa, southern North America, and Central America. Although the geographical distribution of the changes in precipitation and runoff tends to coincide with that in the river discharge, it should be emphasized that the change in runoff at the upstream region affects the river flow in the downstream region. In high-latitude rivers (Amur, Lena, MacKenzie, Ob, Yenisei, and Yukon), the discharge increases, and the peak timing shifts earlier because of an earlier snowmelt caused by global warming. Discharge tends to decrease for the rivers in Europe to the Mediterranean region (Danube, Euphrates, and Rhine), and southern United Sates (Rio Grande).


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Philippe Drobinski ◽  
Nicolas Da Silva ◽  
Sophie Bastin ◽  
Sylvain Mailler ◽  
Caroline Muller ◽  
...  

2017 ◽  
Vol 50 (2) ◽  
pp. 1062
Author(s):  
K. Velikou ◽  
K. Tolika ◽  
Ch. Anagnostopoulou

A parameter that affects significantly the local, regional and global climate system is land cover and the changes that may occur to it. During winter season, heavy precipitation assists vegetation growth of Mediterranean forests and woodlands, whereas during summer, absence of precipitation and severe heat waves result to arid and semiarid vegetation. For that reason, it was quite interesting to track the changes that may occur in the climate of the Mediterranean region due to land cover/land use changes on regional climate over the Mediterranean region. The main objective of the study is the assessment of the impacts of land cover/land use changes on regional climate over the Mediterranean region. The examined regional climate model used in the study is RegCM4.4.5. Its spatial resolution is 25x25km and different simulations were performed with changes in land cover/land use for the time period 1981-1990. The different simulated data were compared in order to examine the modifications that occur from land cover/land use changes in evapotranspiration and surface albedo to direct and diffuse radiation in the domain of study.


2018 ◽  
Author(s):  
Monica Bini ◽  
Giovanni Zanchetta ◽  
Aurel Persoiu ◽  
Rosine Cartier ◽  
Albert Català ◽  
...  

Abstract. The Mediterranean region and the Levant have returned some of the clearest evidence of a climatically dry period occurring around 4200 years ago. However, some regional evidence are controversial and contradictory, and issues remain regarding timing, progression and regional articulation of this event. In this paper we review the evidence from selected proxies (sea-surface temperature, precipitation and temperature reconstructed from pollen, δ18O on speleothems, and δ18O on lacustrine carbonate) over the Mediterranean basin to infer possible regional climate patterns during the interval between 4.3 and 3.8 cal ka BP. The values and limitations of these proxies are discussed, and their potential for furnishing information on seasonality is also explored. Despite the chronological uncertainties, which are the main limitations for disentangling details of the climatic conditions, the data suggests that winter over the Mediterranean was drier condition, in addition to already dry summers. However, some exceptions to this prevail, – where wetter condition seems to have persisted – suggesting regional heterogeneity in climate patterns. Temperature data, even if sparse, also suggest a cooling anomaly, even if this is not uniform. The most common paradigm to interpret the precipitation regime in the Mediterranean – a North Atlantic Oscillation-like pattern – is not completely satisfactory to interpret the selected data.


2019 ◽  
Vol 15 (2) ◽  
pp. 555-577 ◽  
Author(s):  
Monica Bini ◽  
Giovanni Zanchetta ◽  
Aurel Perşoiu ◽  
Rosine Cartier ◽  
Albert Català ◽  
...  

Abstract. The Mediterranean region and the Levant have returned some of the clearest evidence of a climatically dry period occurring around 4200 years ago. However, some regional evidence is controversial and contradictory, and issues remain regarding timing, progression, and regional articulation of this event. In this paper, we review the evidence from selected proxies (sea-surface temperature, precipitation, and temperature reconstructed from pollen, δ18O on speleothems, and δ18O on lacustrine carbonate) over the Mediterranean Basin to infer possible regional climate patterns during the interval between 4.3 and 3.8 ka. The values and limitations of these proxies are discussed, and their potential for furnishing information on seasonality is also explored. Despite the chronological uncertainties, which are the main limitations for disentangling details of the climatic conditions, the data suggest that winter over the Mediterranean involved drier conditions, in addition to already dry summers. However, some exceptions to this prevail – where wetter conditions seem to have persisted – suggesting regional heterogeneity in climate patterns. Temperature data, even if sparse, also suggest a cooling anomaly, even if this is not uniform. The most common paradigm to interpret the precipitation regime in the Mediterranean – a North Atlantic Oscillation-like pattern – is not completely satisfactory to interpret the selected data.


Phytotaxa ◽  
2018 ◽  
Vol 371 (2) ◽  
pp. 133 ◽  
Author(s):  
JOSE A. ALGARRA ◽  
GABRIEL BLANCA ◽  
MIGUEL CUETO ◽  
JULIÁN FUENTES

Narcissus Linnaeus (1753: 289) is a genus widespread in the Mediterranean region and taxonomically very complex, including a broadly variable number of taxa depending on authors. It includes between 26 and 36 species (Webb 1980, Zonneveld 2008), or even up to 110 species recognised in the International Daffodil Register (RHS 2017). In the Iberian Peninsula, 56 taxa (Fernandes 1951) or 33 taxa (Aedo 2013) have been accepted to occur, 10–12 belonging to N. subg. Ajax (Salisb. ex Haworth 1819: 111) Spach (1846: 432) sect. Pseudonarcissus DC. in Redouté (1815: tab. 486). In the south-eastern Iberian Peninsula 16 species (Aedo 2013) to 19 species (Fernandes 1951, Navarro 2011) have been considered, of which one (Aedo 2013) to three (Navarro 2011) correspond to that section, most of them endemic to the area (Bañares et al. 2004, Blanca et al. 1999, 2000, 2001). The Iberian Peninsula is the centre of diversity for N. sect. Pseudonarcissus, with N. nevadensis Pugsley (1933: 62) being proposed as the ancestral species of this group (Fernandes 1951). Recently, after molecular analyses (Zonneveld 2008, Marques et al. 2017), this species has been separated into an independent section: N. sect. Nevadensis Zonneveld (2008: 130).


Sign in / Sign up

Export Citation Format

Share Document