scholarly journals Future precipitation changes in three key sub-regions of East Asia: the roles of thermodynamics and dynamics

2021 ◽  
Author(s):  
Jiao Li ◽  
Yang Zhao ◽  
Deliang Chen ◽  
Yanzhen Kang ◽  
Hui Wang

AbstractPrevious studies have projected an increase in future summer precipitation across East Asia (EA). This study investigates the relative contributions of thermodynamic and dynamic components to future precipitation changes in three key sub-regions of EA where the maximum centers of the historical precipitation are located (the tropical region, East China, and the Japan and Korea sector), and analyzes the causes of the changes in thermodynamic and dynamic components. Outputs from 30 climate models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are used. From these, the five best-performing models for historical summer precipitation climatology for EA are selected. The future summer precipitations in the three sub-regions over the near- to mid-term (2020–2069) and the long-term (2070–2095) are then examined using the multi-model ensemble mean of the five models selected (MMM05). The projections were driven by four combined scenarios of the Shared Socioeconomic Pathways (SSPs) and forcing levels of the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results show that long-term precipitations under SSP5-8.5 are greater than those under the other scenarios across all sub-regions. After the 2070s under SSP5-8.5, a marked precipitation intensification is identified in all three sub-regions, but with different rates of increase. The projected precipitation increase is primarily attributed to the thermodynamic component, while the dynamic component related to circulation changes is relatively weak. Further analysis indicates that the pattern of the thermodynamic component in the three sub-regions is dominated by the climatological upward motion, mediated by an increase in moisture.

Author(s):  
Sungbo Shim ◽  
Hyunmin Sung ◽  
Sanghoon Kwon ◽  
Jisun Kim ◽  
Jaehee Lee ◽  
...  

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.


2019 ◽  
Vol 40 (4) ◽  
pp. 2270-2284 ◽  
Author(s):  
Changyong Park ◽  
Dong‐Hyun Cha ◽  
Gayoung Kim ◽  
Gil Lee ◽  
Dong‐Kyou Lee ◽  
...  

2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


2013 ◽  
Vol 26 (12) ◽  
pp. 4168-4185 ◽  
Author(s):  
Sanjiv Kumar ◽  
Venkatesh Merwade ◽  
James L. Kinter ◽  
Dev Niyogi

Abstract The authors have analyzed twentieth-century temperature and precipitation trends and long-term persistence from 19 climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). This study is focused on continental areas (60°S–60°N) during 1930–2004 to ensure higher reliability in the observations. A nonparametric trend detection method is employed, and long-term persistence is quantified using the Hurst coefficient, taken from the hydrology literature. The authors found that the multimodel ensemble–mean global land–average temperature trend (0.07°C decade−1) captures the corresponding observed trend well (0.08°C decade−1). Globally, precipitation trends are distributed (spatially) at about zero in both the models and in the observations. There are large uncertainties in the simulation of regional-/local-scale temperature and precipitation trends. The models’ relative performances are different for temperature and precipitation trends. The models capture the long-term persistence in temperature reasonably well. The areal coverage of observed long-term persistence in precipitation is 60% less (32% of land area) than that of temperature (78%). The models have limited capability to capture the long-term persistence in precipitation. Most climate models underestimate the spatial variability in temperature trends. The multimodel ensemble–average trend generally provides a conservative estimate of local/regional trends. The results of this study are generally not biased by the choice of observation datasets used, including Climatic Research Unit Time Series 3.1; temperature data from Hadley Centre/Climatic Research Unit, version 4; and precipitation data from Global Historical Climatology Network, version 2.


2019 ◽  
Author(s):  
Takasumi Kurahashi-Nakamura ◽  
André Paul ◽  
Guy Munhoven ◽  
Ute Merkel ◽  
Michael Schulz

Abstract. We developed a coupling scheme for the Community Earth System Model version 1.2 (CESM1.2) and the Model of Early Diagenesis in the Upper Sediment of Adjustable complexity (MEDUSA), and explored the effects of the coupling on solid components in the upper sediment and on bottom seawater chemistry by comparing the coupled model's behaviour with that of the uncoupled CESM having a simplified treatment of sediment processes. CESM is a fully-coupled atmosphere-ocean-sea ice-land model and its ocean component (the Parallel Ocean Program version 2, POP2) includes a biogeochemical component (BEC). MEDUSA was coupled to POP2 in an off-line manner so that each of the models ran separately and sequentially with regular exchanges of necessary boundary condition fields. This development was done with the ambitious aim of a future application for long-term (spanning a full glacial cycle; i.e., ~ 105 years) climate simulations with a state-of-the-art comprehensive climate model including the carbon cycle, and was motivated by the fact that until now such simulations have been done only with less-complex climate models. We found that the sediment-model coupling already had non-negligible immediate advantages for ocean biogeochemistry in millennial-time-scale simulations. First, the MEDUSA-coupled CESM outperformed the uncoupled CESM in reproducing an observation-based global distribution of sediment properties, especially for organic carbon and opal. Thus, the coupled model is expected to act as a better bridge between climate dynamics and sedimentary data, which will provide another measure of model performance. Second, in our experiments, the MEDUSA-coupled model and the uncoupled model had a difference of 0.2‰ or larger in terms of δ13C of bottom water over large areas, which implied potential significant model biases for bottom seawater chemical composition due to a different way of sediment treatment. Such a model bias would be a fundamental issue for paleo model–data comparison often relying on data derived from benthic foraminifera.


2016 ◽  
Vol 29 (9) ◽  
pp. 3317-3337 ◽  
Author(s):  
Nagio Hirota ◽  
Yukari N. Takayabu ◽  
Atsushi Hamada

Abstract Reproducibility of summer precipitation over northern Eurasia in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated in comparison with several observational and reanalysis datasets. All CMIP5 models under- and overestimate precipitation over western and eastern Eurasia, respectively, and the reproducibility measured using the Taylor skill score is largely determined by the severity of these west–east precipitation biases. The following are the two possible causes for the precipitation biases: very little cloud cover and very strong local evaporation–precipitation coupling. The models underestimate cloud cover over Eurasia, allowing too much sunshine and leading to a warm bias at the surface. The associated cyclonic circulation biases in the lower troposphere weaken the modeled moisture transport from the Atlantic to western Eurasia and enhance the northward moisture flux along the eastern coast. Once the dry west and wet east biases appear in the models, they become amplified because of stronger evaporation–precipitation coupling. The CMIP5 models reproduce precipitation events well over a time scale of several days, including the associated low pressure systems and local convection. However, the modeled precipitation events are relatively weaker over western Eurasia and stronger over eastern Eurasia compared to the observations, and these are consistent with the biases found in the seasonal average fields.


2021 ◽  
Author(s):  
Yong Sun ◽  
Haibin Wu ◽  
Gilles Ramstein ◽  
Bo Liu ◽  
Yan Zhao ◽  
...  

Abstract The mid-Holocene (MH; 6 ka) is one of the benchmark periods for the Paleoclimate Modeling Intercomparison Project (PMIP) and provides a unique opportunity to study monsoon dynamics and orbital forcing (i.e., mostly precession) that differ significantly from the present day. We conducted a data–model comparison along with a dynamic analysis to investigate monsoonal (i.e., East Asian summer monsoon; EASM) precipitation changes over East Asia during the MH. We used the three phases of the PMIP simulations for the MH, and quantitatively compared the model results with pollen-based climate records. The data–model comparison shows an overall increase in precipitation, except for a local decrease in EASM precipitation during the MH. Decomposition of the moisture budget into thermodynamic, dynamic components and co-variations in both allowed us to assess the relative role of thermodynamic and dynamic components in controlling EASM precipitation during the MH, and to investigate the precipitation changes obtained from pollen records in terms of physical processes. We show that the dynamic effect, rather than the thermodynamic effect, is the dominant control in increased EASM precipitation during the MH in both the proxy records and models. The dynamic increase in precipitation results mainly from the enhancement of horizontal monsoonal moisture transport that is caused by intensified stationary eddy horizontal circulation over East Asia. In addition, a cloud cooling effect reduced the thermodynamic contribution to the increase in EASM precipitation during the MH.


2021 ◽  
pp. 1-38

Abstract This study investigates future changes in daily precipitation extremes and the involved physics over the global land monsoon (GM) region using climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6). The daily precipitation extreme is identified by the cutoff scale, measuring the extreme tail of the precipitation distribution. Compared to the historical period, multi-model results reveal a continuous increase in precipitation extremes under four scenarios, with a progressively higher fraction of precipitation exceeding the historical cutoff scale when moving into the future. The rise of the cutoff-scale by the end of the century is reduced by 57.8% in the moderate emission scenario relative to the highest scenario, underscoring the social benefit in reducing emissions. The cutoff scale sensitivity, defined by the increasing rates of the cutoff scale over the GM region to the global mean surface temperature increase, is nearly independent of the projected periods and emission scenarios, roughly 8.0% K−1 by averaging all periods and scenarios. To understand the cause of the changes, we applied a physical scaling diagnostic to decompose them into thermodynamic and dynamic contributions. We find that thermodynamics and dynamics have comparable contributions to the intensified precipitation extremes in the GM region. Changes in thermodynamic scaling contribute to a spatially uniform increase pattern, while changes in dynamic scaling dominate the regional differences in the increased precipitation extremes. Furthermore, the large inter-model spread of the projection is primarily attributed to variations of dynamic scaling among models.


Sign in / Sign up

Export Citation Format

Share Document