17β-Estradiol-induced interaction of estrogen receptor α and human atrial essential myosin light chain modulates cardiac contractile function

2016 ◽  
Vol 112 (1) ◽  
Author(s):  
Karolin Duft ◽  
Miriam Schanz ◽  
Hang Pham ◽  
Ahmed Abdelwahab ◽  
Cindy Schriever ◽  
...  
2018 ◽  
Vol 124 (4) ◽  
pp. 980-992 ◽  
Author(s):  
Brittany C. Collins ◽  
Tara L. Mader ◽  
Christine A. Cabelka ◽  
Melissa R. Iñigo ◽  
Espen E. Spangenburg ◽  
...  

Estradiol deficiency in females can result in skeletal muscle strength loss, and treatment with estradiol mitigates the loss. There are three primary estrogen receptors (ERs), and estradiol elicits effects through these receptors in various tissues. Ubiquitous ERα-knockout mice exhibit numerous biological disorders, but little is known regarding the specific role of ERα in skeletal muscle contractile function. The purpose of this study was to determine the impact of skeletal muscle-specific ERα deletion on contractile function, hypothesizing that ERα is a main receptor through which estradiol affects muscle strength in females. Deletion of ERα specifically in skeletal muscle (skmERαKO) did not affect body mass compared with wild-type littermates (skmERαWT) until 26 wk of age, at which time body mass of skmERαKO mice began to increase disproportionally. Overall, skmERαKO mice had low strength demonstrated in multiple muscles and by several contractile parameters. Isolated extensor digitorum longus muscles from skmERαKO mice produced 16% less eccentric and 16–26% less submaximal and maximal isometric force, and isolated soleus muscles were more fatigable, with impaired force recovery relative to skmERαWT mice. In vivo maximal torque productions by plantarflexors and dorsiflexors were 16% and 12% lower in skmERαKO than skmERαWT mice, and skmERαKO muscles had low phosphorylation of myosin regulatory light chain. Plantarflexors also generated 21–32% less power, submaximal isometric and peak concentric torques. Data support the hypothesis that ablation of ERα in skeletal muscle results in muscle weakness, suggesting that the beneficial effects of estradiol on muscle strength are receptor mediated through ERα. NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo skeletal muscle contractility in female estrogen receptor α (ERα) skeletal muscle-specific knockout mice and report that force generation is impaired across multiple parameters. These results support the hypothesis that a primary mechanism through which estradiol elicits its effects on strength is mediated by ERα. Evidence is presented that estradiol signaling through ERα appears to modulate force at the molecular level via posttranslational modifications of myosin regulatory light chain.


Circulation ◽  
1997 ◽  
Vol 95 (4) ◽  
pp. 778-781 ◽  
Author(s):  
Ralph A. Kelly ◽  
Thomas W. Smith

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 663
Author(s):  
Friederike Cuello ◽  
Friedrich W. Herberg ◽  
Konstantina Stathopoulou ◽  
Philipp Henning ◽  
Simon Diering

Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 623
Author(s):  
Marit Rasmussen ◽  
Susanna Tan ◽  
Venkata S. Somisetty ◽  
David Hutin ◽  
Ninni Elise Olafsen ◽  
...  

ADP-ribosylation is a post-translational protein modification catalyzed by a family of proteins known as poly-ADP-ribose polymerases. PARP7 (TIPARP; ARTD14) is a mono-ADP-ribosyltransferase involved in several cellular processes, including responses to hypoxia, innate immunity and regulation of nuclear receptors. Since previous studies suggested that PARP7 was regulated by 17β-estradiol, we investigated whether PARP7 regulates estrogen receptor α signaling. We confirmed the 17β-estradiol-dependent increases of PARP7 mRNA and protein levels in MCF-7 cells, and observed recruitment of estrogen receptor α to the promoter of PARP7. Overexpression of PARP7 decreased ligand-dependent estrogen receptor α signaling, while treatment of PARP7 knockout MCF-7 cells with 17β-estradiol resulted in increased expression of and recruitment to estrogen receptor α target genes, in addition to increased proliferation. Co-immunoprecipitation assays revealed that PARP7 mono-ADP-ribosylated estrogen receptor α, and mass spectrometry mapped the modified peptides to the receptor’s ligand-independent transactivation domain. Co-immunoprecipitation with truncated estrogen receptor α variants identified that the hinge region of the receptor is required for PARP7-dependent mono-ADP-ribosylation. These results imply that PARP7-mediated mono-ADP-ribosylation may play an important role in estrogen receptor positive breast cancer.


2009 ◽  
Vol 297 (3) ◽  
pp. R682-R689 ◽  
Author(s):  
Yinan Hua ◽  
Heng Ma ◽  
Willis K. Samson ◽  
Jun Ren

Neuronostatin, a newly identified peptide hormone sharing the same precursor with somatostatin, exerts multiple pharmacological effects in gastrointestinal tract, hypothalamus, and cerebellum. However, the cardiovascular effect of neuronostatin is unknown. The aim of this study was to elucidate the impact of neuronostatin on cardiac contractile function in murine hearts and isolated cardiomyocytes. Short-term exposure of neuronostatin depressed left ventricular developed pressure (LVDP), maximal velocity of pressure development (±dP/d t), and heart rate in Langendorff heart preparation. Consistently, neuronostatin inhibited peak shortening (PS) and maximal velocity of shortening/relengthening (±dL/d t) without affecting time-to-PS (TPS) and time-to-90% relengthening (TR90) in cardiomyocytes. The neuronostatin-elicited cardiomyocyte mechanical responses were mimicked by somatostatin, the other posttranslational product of preprosomatostatin. Furthermore, the neuronostatin-induced cardiomyocyte mechanical effects were ablated by the PKA inhibitor H89 (1 μM) and the Jun N-terminal kinase (JNK) inhibitor SP600125 (20 μM). The PKC inhibitor chelerythrine (1 μM) failed to alter neuronostatin-induced cardiomyocyte mechanical responses. To the contrary, chelerythrine, but not H89, abrogated somatostatin-induced cardiomyocyte contractile responses. Our results also showed enhanced c-fos and c-jun expression in response to neuronostatin exposure (0.5 to 2 h). Taken together, our data suggest that neuronostatin is a peptide hormone with overt cardiac depressant action. The neuronostatin-elicited cardiac contractile response appears to be mediated, at least in part, through a PKA- and/or JNK-dependent mechanism.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Perike Srikanth ◽  
Andrielle E Capote ◽  
Alsina Katherina M ◽  
Benjamin Levin ◽  
...  

Atrial fibrillation (AF) is the most common sustained arrhythmia, with an estimated prevalence in the U.S.of 6.1 million. AF increases the risk of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. We have recently identified protein phosphatase 1 subunit 12c (PPP1R12C) as a key molecule targeting myosin light-chain phosphorylation in AF. Objective: We hypothesize that the overexpression of PPP1R12C causes hypophosphorylation of atrial myosin light-chain 2 (MLC2a), thereby decreasing atrial contractility in AF. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluate the role of the PP1c-PPP1R12C interaction in MLC2a de-phosphorylation, we utilized Western blots, co-immunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A), PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, associated with a reduction in atrial contractility and an increase in AF inducibility. All these discoveries suggest that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Yihua Bei ◽  
Jiahong Xu ◽  
Tianzhao Xu ◽  
Ping Chen ◽  
Lin Che ◽  
...  

Doxorubicin (Dox)-induced cardiotoxicity, usually associated with increased oxidative stress, myofibrillar deterioration, and impaired cardiac contractile function, is a serious complication of antitumor therapy which may not be detected for many years. Growing evidence indicates that the regulation of cardiac microRNA (miRNA, miR) in response to exercise is essentially involved in the protective effect of exercise in the treatment of cardiovascular diseases. However, it is largely unknown whether and how exercise could prevent Dox-induced cardiotoxicity via regulating miRNA biology. In the current study, C57BL/6 mice were either subjected to a 3-week swimming program or remained sedentary. Mice were then treated with Dox (ip. 4 mg/kg/week for 4 weeks) to induce cardiotoxicity. Our data demonstrated that Dox resulted in marked reduction of cardiac ejection fraction (EF, %) and fractional shortening (FS, %) as measured by echocardiography. Interestingly, exercise significantly improved cardiac EF (%) and FS (%) in Dox-treated mice, indicating the protective effect of exercise in Dox-induced cardiotoxicity. Then, we performed microarray analysis (Affymetrix 3.0) showing that miR-27a-5p, miR-34b-3p, miR-185-3p, miR-203-3p, miR-669a-5p, miR-872-3p, and let-7i-3p were significantly reduced, while miR-2137 was increased in the hearts of exercised Dox-treated mice versus sedentary Dox-treated mice (FC(abs)>1.5, p<0.05). Using qRT-PCR, we further verified that miR-669a-5p was reduced by exercise training in Dox-treated mice. These data reveal that miR-669a-5p might be a potential miRNA mimicking the benefit of exercise in Dox-induced cardiotoxicity. Further study is needed to clarify the functional effect of miR-669a-5p and to identify its downstream target gene that contributes to the prevention and treatment of Dox-induced cardiotoxicity.


Sign in / Sign up

Export Citation Format

Share Document