scholarly journals Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Jiao Jiao ◽  
Shujie He ◽  
Yiqiu Wang ◽  
Yuzhi Lu ◽  
Muyang Gu ◽  
...  

AbstractOveractivated inflammatory responses contribute to adverse ventricular remodeling after myocardial infarction (MI). Regulatory B cells (Bregs) are a newly discovered subset of B cells with immunomodulatory roles in many immune and inflammation-related diseases. Our study aims to determine whether the expansion of Bregs exerts a beneficial effect on ventricular remodeling and explore the mechanisms involved. Here, we showed that adoptive transfer of Bregs ameliorated ventricular remodeling in a murine MI model, as demonstrated by improved cardiac function, decreased scar size and attenuated interstitial fibrosis without changing the survival rate. Reduced Ly6Chi monocyte infiltration was found in the hearts of the Breg-transferred mice, while the infiltration of Ly6Clo monocytes was not affected. In addition, the replenishment of Bregs had no effect on the myocardial accumulation of T cells or neutrophils. Mechanistically, Bregs reduced the expression of C–C motif chemokine receptor 2 (CCR2) in monocytes, which inhibited proinflammatory monocyte recruitment to the heart from the peripheral blood and mobilization from the bone marrow. Breg-mediated protection against MI was abrogated by treatment with an interleukin 10 (IL-10) antibody. Finally, IL-10 neutralization reversed the effect of Bregs on monocyte migration and CCR2 expression. The present study suggests a therapeutic value of Bregs in limiting ventricular remodeling after MI through decreasing CCR2-mediated monocyte recruitment and mobilization.

2016 ◽  
Vol 5 (1) ◽  
pp. 23-26
Author(s):  
Ting Miao

Abstract B cells play immunomodulatory roles mainly by presenting antigens and producing antibodies. In recent years, some B cells were shown to exhibit regulatory functions. This type of B cell was named regulatory B cells (Bregs). Bregs can mediate immune tolerance to inhibit excessive inflammatory responses and to accelerate recovery of inflammation by producing interleukin 10 and/or transforming growth factor β1 and other inhibitory cytokines. Studies showed that Bregs play important roles in parasites, bacteria, and viral infections. This study reviews biological characteristics, functions, and microsignal regulation of Bregs and their mechanism in infectious diseases and related research progress.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yokota Yunosuke ◽  
Goh Kodama ◽  
Sakuya Itou ◽  
Yosuke Nakayama ◽  
Nobukazu Komatsu ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI), even if followed by renal recovery, is a risk factor for the future development of chronic kidney disease (CKD) and end- stage renal disease. It has been postulated that interleukin-10 (IL-10)-producing Regulatory B cells (Breg) play an important role for the tissue repairment in several tissues and organs. Basically, protective role of Breg has been reported in inflammatory bowel disease. In the kidney, it has been shown that IL-10 suppresses renal function decline and improves renal prognosis in IRI model, a typical model of AKI. However, the identity of Breg in the kidney and their origin have not been clarified. Further, how the Breg works during the transition from AKI to CKD is not known. Therefore, first we investigated whether Breg existed in renal tissue on the progression from AKI to CKD in IRI model mice. Further, we performed splenectomy, and examined the renal injury, Breg, and plasma IL-10 levels in this model. Method To examine the existence of Breg in the kidney of IRI model, we used 8-10 weeks-old GFP / IL-10 mice based on C57BL / 6J mice. They are reporter mice for IL-10 producing cells, and can visualize IL-10 producing cells under a fluorescence microscope without fluorescent immunostaining. We prepared following three groups, sham, IRI (unilateral), and IRI + SN (splenectomy) groups. Mice were anesthetized with chloral hydrate (4 g/kg,, intraperitoneal). After making a midline incision, exposed a blood vessel of the left renal pedicles and clamped it for 30 min by clips. one day, 7 days, and 14 days after the surgery, mice were sacrificed, and renal function and plasma IL-10 levels as well as tissue damages by PAS and Masson’s Trichrome staining were assessed. Tissue IL-10-producing cells were detected by flow cytometry. Results There was no difference of plasma IL-10 levels and renal tubulointerstitial injury in IRI group and IRI+SN group on day 1 after IRI. However, on day 7 and day 14, plasma IL-10 levels became gradually higher in IRI group, and SN decreased the increase in IL-10 levels. Tubulointerstitial injury was induced by IRI and SN further worsened tubular damages. Serum Cr and BUN levels were not different in three groups due to normal right kidney. On day 1, number of IL-10-producing B cells increased in the spleen and renal medulla in IRI group confirmed by flow cytometry, which was completely diminished by SN, suggesting that origin of the infiltrated Breg might be spleen, thereby being involved in the protective role in IRI injury in the kidney. Conclusion We report for the first time that Breg might be recruited from spleen by AKI, which may be one of the mechanisms to prevent the progression to CKD.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yan He ◽  
Hongyan Qian ◽  
Yuan Liu ◽  
Lihua Duan ◽  
Yan Li ◽  
...  

Regulatory B cells (Bregs), a newly described subset of B cells, have been proved to play a suppressive role in immune system. Bregs can inhibit other immune cells through cytokines secretion and antigen presentation, which give them the role in the pathogenesis of autoimmune diseases and cancers. There are no clear criteria to identify Bregs; different markers were used in the different experimental conditions. Massive researches had described the functions of immune cells such as regulatory T cells (Tregs), dendritic cells (DCs), and B cells in the autoimmune disorder diseases and cancers. More and more researches focused on the roles of Bregs and the cytokines such as Interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) secreted by Bregs. The aim of this review is to summarize the characteristics of Bregs and the roles of Bregs in cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Catalán ◽  
Miguel Andrés Mansilla ◽  
Ashley Ferrier ◽  
Lilian Soto ◽  
Kristine Oleinika ◽  
...  

Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.


Author(s):  
Merel Jacobs ◽  
Sven Verschraegen ◽  
Bihiyga Salhi ◽  
Guy Brusselle ◽  
Ken Bracke

2018 ◽  
Vol 86 (5) ◽  
Author(s):  
Xue Han ◽  
Ji Yang ◽  
Yitong Zhang ◽  
Yalin Zhang ◽  
Hongtao Cao ◽  
...  

ABSTRACTInterleukin-10 (IL-10)-producing regulatory B (Breg) cells were found to be induced in a variety of infectious diseases. However, its importance in the regulation of immune response to malaria is still unclear. Here, we investigated the dynamics, phenotype, and function of Breg cells usingPlasmodium chabaudi chabaudiAS-infected C57BL/6 and BALB/c mice. BALB/c mice were more susceptible to infection and had a stronger IL-10 response in spleen than C57BL/6 mice. Analysis of the surface markers of IL-10-producing cells with flow cytometry showed that CD19+B cells were one of the primary IL-10-producing populations inP. c. chabaudiAS-infected C57BL/6 and BALB/c mice, especially in the latter one. The Breg cells had a heterogeneous phenotype which shifted during infection. The well-established Breg subset, CD19+CD5+CD1dhicells, accounted for less than 20% of IL-10-producing B cells in both strains during the course of infection. Most Breg cells were IgG+and CD138−from day 0 to day 8 postinfection. Adoptive transfer of Breg cells to C57BL/6 mice infected withP. c. chabaudiAS led to a transient increase of parasitemia without an impact on survival rate. Our finding reveals that B cells play an active and important regulatory role in addition to mediating humoral immunity in immune response against malaria, which should be paid more attention in developing therapeutic or vaccine strategies against malaria involving stimulation of B cells.


Theranostics ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 2800-2811 ◽  
Author(s):  
Xiong Sun ◽  
Chuanyong Guo ◽  
Fang Zhao ◽  
Jianhuan Zhu ◽  
Yilu Xu ◽  
...  

2020 ◽  
Author(s):  
Jianbing Zhu ◽  
Hang Chen ◽  
Yuanji Ma ◽  
Haibo Liu ◽  
Zhaoyang Chen

Abstract BackgroundNecrosis of ischemic cardiomyocytes after myocardial infarction (MI) activates an intense inflammatory reaction. Dendritic cells (DCs) play a crucial role in the repair process after MI. Tolerogenic DCs (tDCs) can inhibit inflammatory responses. Methods and resultsWe investigated the role of atorvastatin and supernatants of necrotic cardiomyocytes (SNC) on DCs. We found that SNC induced DCs maturation, activated TLR-4/NF-κB pathway, promoted inflammatory cytokines secretion and oxidative stress. Co-treatment with SNC and atorvastatin suppressed DC maturation and inflammatory response, which meant that atorvastatin induced DCs tolerate to SNC. Then, we investigated the effect of mDCs induced by SNC and tDCs induced by atorvastatin on ventricular remodeling after MI. tDCs treatment significantly improved the left ventricular systolic function, reduced the infiltration of MPO+ neutrophil, Mac3+ macrophages and CD3+ T cells, inhibited myocardial apoptosis and fibrosis, and decreased infarct size. Compared with PBS, treatment with mDCs did not showed beneficial effect on ventricular remodeling and inflammatory reaction after MI in mice.ConclusionAtorvastatin inactivated the TLR-4/NF-κB pathway, repressed the oxidative stress, inflammatory response, and immune maturity induced by SNC. Treatment with tDCs, induced by co-treated with atorvastatin, preserved left ventricular function, limited infarct size, suppressed the infiltration of inflammatory cells, and attenuated the severity of fibrosis, and reduced the number of apoptotic cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document