Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females

2009 ◽  
Vol 106 (5) ◽  
pp. 645-653 ◽  
Author(s):  
Konstantina Dipla ◽  
Theano Tsirini ◽  
Andreas Zafeiridis ◽  
Vasiliki Manou ◽  
Athanassios Dalamitros ◽  
...  
2002 ◽  
Vol 12 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Nicolette C. Bishop ◽  
Michael Gleeson ◽  
Ceri W. Nicholas ◽  
Ajmol Ali

Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qishu Zhou ◽  
Chunyu Liang ◽  
Yafei Li ◽  
Yi Yan

Objective  To investigate the effect of one-time high-intensity intermittent exercise in white fat autophagy in obese rats and provide a theoretical basis of the molecular mechanism of exercise fat loss. Methods  Eighteen male 3-weeks-old rats were selected and divided into control group fed with normal diet (C), high-fat diet group fed with high fat diet (H). After 16 weeks, there were twelve obesity rats that divided into diet group (HS) and exercise group (HE). The other six control group rats of 19 weeks age were used as the standard (CS group). OE group did the high intensity intermittent exercise once. The CS group and the CS group were kept quietly. Three groups were taken subcutaneous white adipose tissue(S) and epididymal white adipose tissue (E) immediately after exercise. Mensurate the expression of LC3 gene in the tissue using the fluorescent quantitative PCR. Results 1. The expression of LC3 mRNA from white fat tissue was different to the tissues, which the expression of epididymal white adipose tissue of each group was higher than that in subcutaneous white adipose tissue (P <0.01). 2. Compared with CS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.01) and the expression of the subcutaneous white adipose tissue increased from HS group (P <0.05). 3. Compared with OS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.05) and the expression of subcutaneous white adipose tissue decreased from OS group. Conclusions The expression of LC3mRNA in epididymal white fat adipose tissue of rats was significantly higher than that of subcutaneous white fat. The changes of LC3mRNA expression of adipose tissue caused by high-fat diet have tissue differences. One-time high-intensity intermittent exercise can reduce the expression of LC3mRNA in fat tissue of obese rats. Its regulatory mechanism needs to be further studied.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Jessica Danaher ◽  
Christos G. Stathis ◽  
Robin A. Wilson ◽  
Alba Moreno-Asso ◽  
R. Mark Wellard ◽  
...  

1994 ◽  
Vol 76 (4) ◽  
pp. 1540-1547 ◽  
Author(s):  
D. J. Prezant ◽  
B. Richner ◽  
T. K. Aldrich ◽  
D. E. Valentine ◽  
E. I. Gentry ◽  
...  

The effects of long-term undernutrition (10 wk) on diaphragm contractility, fatigue, and fiber type proportions were studied in male and female rats. Contractility and fatigue resistance indexes were measured in an in vitro diaphragm costal strip preparation by using direct stimulation at 37 degrees C. Undernutrition allowed for continued growth in males and females but with substantial reductions in weight gain. Relative to control rats of the same sex, final weights were significantly lower in undernourished males (74 +/- 3%) than females (90 +/- 5%), but weight gain was not significantly different between undernourished males (58 +/- 5%) and females (60 +/- 3%). Only in males did undernutrition significantly reduce costal diaphragm weight (to 77 +/- 5% of control). Diaphragm forces, normalized for cross-sectional area, were not significantly different from male or female control values. Fatigue resistance indexes (fatigue/baseline force) were increased at all stimulation frequencies in undernourished males but not in undernourished females. Costal diaphragm atrophy, involving types I and II fibers, occurred in undernourished males but not in undernourished females. In conclusion, despite long-term undernutrition reducing weight gain to similar levels in males and females (relative to control), there was excellent preservation of diaphragm weight, function, and structure in females but, although diaphragm atrophy occurred, there was preserved contractility and increased fatigue resistance in males.


2011 ◽  
Vol 60 (5) ◽  
pp. 493-502 ◽  
Author(s):  
KEISUKE SHIOSE ◽  
TAKURO TOBINA ◽  
YASUKI HIGAKI ◽  
AKIRA KIYONAGA ◽  
HIROAKI TANAKA

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1764 ◽  
Author(s):  
Robin A. Wilson ◽  
Christos G. Stathis ◽  
Alan Hayes ◽  
Matthew B. Cooke

The molecular adaptations that underpin body composition changes and health benefits of intermittent fasting (IF) and high-intensity interval training (HIIT) are unclear. The present study investigated these adaptations within the hypothalamus, white adipose and skeletal muscle tissue following 12 weeks of IF and/or HIIT in diet-induced obese mice. Mice (C57BL/6, 8-week-old, males/females) were fed high-fat (59%) and sugar (30%) water (HF/S) for 12 weeks followed by an additional 12 weeks of HF/S plus either IF, HIIT, combination (IF+HIIT) or HF/S only control (CON). Tissues were harvested at 12 and 24 weeks and analysed for various molecular markers. Hypothalamic NPY expression was significantly lower following IF+HIIT compared to CON in females. In adipose tissue, leptin expression was significantly lower following IF and IF+HIIT compared to CON in males and females. Males demonstrated increased markers of fat oxidation (HADH, FABP4) following IF+HIIT, whereas females demonstrated reduced markers of adipocyte differentiation/storage (CIDEC and FOXO1) following IF and/or IF+HIIT. In muscle, SIRT1, UCP3, PGC1α, and AS160 expression was significantly lower following IF compared to CON in males and/or females. This investigation suggests that males and females undertaking IF and HIIT may prevent weight gain via different mechanisms within the same tissue.


Sign in / Sign up

Export Citation Format

Share Document