scholarly journals Left ventricular depression and pulmonary edema in rats after short-term normobaric hypoxia: effects of adrenergic blockade and reduced fluid load

Author(s):  
Peter Appelt ◽  
Philipp Gabriel ◽  
Christian Bölter ◽  
Nicole Fiedler ◽  
Katrin Schierle ◽  
...  

AbstractAcute normobaric hypoxia may induce pulmonary injury with edema (PE) and inflammation. Hypoxia is accompanied by sympathetic activation. As both acute hypoxia and high plasma catecholamine levels may elicit PE, we had originally expected that adrenergic blockade may attenuate the severity of hypoxic pulmonary injury. In particular, we investigated whether administration of drugs with reduced fluid load would be beneficial with respect to both cardiocirculatory and pulmonary functions in acute hypoxia. Rats were exposed to normobaric hypoxia (10% O2) over 1.5 or 6 h and received 0.9% NaCl or adrenergic blockers either as infusion (1 ml/h, increased fluid load) or injection (0.5 ml, reduced fluid load). Control animals were kept in normoxia and received infusions or injections of 0.9% NaCl. After 6 h of hypoxia, LV inotropic function was maintained with NaCl injection but decreased significantly with NaCl infusion. Adrenergic blockade induced a similar LV depression when fluid load was low, but did not further deteriorate LV depression after 6 h of infusion. Reduced fluid load also attenuated pulmonary injury after 6 h of hypoxia. This might be due to an effective fluid drainage into the pleural space. Adrenergic blockade could not prevent PE. In general, increased fluid load and impaired LV inotropic function promote the development of PE in acute hypoxia. The main physiologic conclusion from this study is that fluid reduction under hypoxic conditions has a protective effect on cardiopulmonary function. Consequently, appropriate fluid management has particular importance to subjects in hypoxic conditions.

2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Magnani ◽  
Gabriele Mulliri ◽  
Silvana Roberto ◽  
Fabio Sechi ◽  
Giovanna Ghiani ◽  
...  

Acute hypoxia (AH) is a challenge to the homeostasis of the cardiovascular system, especially during exercise. Research in this area is scarce. We aimed to ascertain whether echocardiographic, Doppler, and tissue Doppler measures were able to detect changes in systolic and diastolic functions during the recovery after mild exercise in AH. Twelve healthy males (age 33.5 ± 4.8 years) completed a cardiopulmonary test on an electromagnetically braked cycle-ergometer to determine their maximum workload (Wmax). On separate days, participants performed randomly assigned two exercise sessions consisting in 3 min pedalling at 30% of Wmax: (1) one test was conducted in normoxia (NORMO) and (2) one in normobaric hypoxia with FiO2 set to 13.5% (HYPO). Hemodynamics were assessed with an echocardiographic system. The main result was that the HYPO session increased parameters related to myocardial contractility such as pre-ejection period and systolic myocardial velocity with respect to the NORMO test. Moreover, the HYPO test enhanced early transmitral filling peak velocities. No effects were detected for left ventricular volumes, as end-diastolic, end-systolic, and stroke volume were similar between the NORMO and the HYPO test. Results of the present investigation support the hypothesis that a brief, mild exercise bout in acute normobaric hypoxia does not impair systolic or diastolic functions. Rather, it appears that stroke volume is well preserved and that systolic and early diastolic functions are enhanced by exercise in hypoxia.


1994 ◽  
Vol 266 (2) ◽  
pp. H468-H475 ◽  
Author(s):  
J. M. Levett ◽  
C. C. Marinelli ◽  
D. D. Lund ◽  
B. J. Pardini ◽  
S. Nader ◽  
...  

We investigated neurohumoral profiles and transmitter and neuroenzyme markers of cardiac autonomic innervation in control (unpaced) dogs and three groups of dogs with pacing-induced heart failure (paced, paced + beta-adrenergic blockade, and paced + cardiac denervation). Left ventricular ejection fraction decreased significantly and to a comparable extent in all paced groups. Pacing increased plasma norepinephrine (NE); increases in NE were not attenuated but instead tended to be exaggerated by treatment with propranolol or cardiac denervation. Atrial hypertrophy occurred in all paced groups compared with the control group. However, atrial and right ventricular hypertrophy were not as pronounced in the paced plus cardiac denervation group as in the paced and paced plus propranolol groups. Pacing also depleted neuropeptide Y and NE from all heart chambers; propranolol treatment did not modify these local tissue changes. Pacing caused selective depletion of neuroenzymes predominantly in the left ventricle; again, propranolol did little to modify these changes. In this study of paced animals with experimentally maintained cardiac dysfunction, failure to modify noradrenergic responses with intrapericardial cardiac denervation suggests that noncardiac sources contribute predominantly to high plasma NE. Failure to modify neurohumoral, neuropeptide, and neuroenzyme responses with beta-antagonist suggests this treatment has little practical direct influence on sympathetic vasomotor activity or neuronal function in heart failure.


Author(s):  
Michael Buono ◽  
Kaitlyn Rostomily

BACKGROUND: It has previously been reported that chronic hypoxia increases blood viscosity. The increase is usually attributed to polycythemia-induced increases in hematocrit. However, the effect of acute hypoxia in humans on blood viscosity is unknown. OBJECTIVE: Therefore, the purpose of this study was to determine the effect of acute hypoxia, independent of changes in hematocrit, on blood and plasma viscosity. METHODS: Nine healthy volunteers breathed room air for 30 min, followed by 30 min of breathing 15% oxygen. Blood samples were collected at the end of both the normoxic and hypoxic conditions. Blood viscosity, plasma viscosity, and hematocrit were measured in each sample. RESULTS: The mean±SD hemoglobin oxygen saturation significantly (P <  0.05) decreased from 98±1% during normoxia to 87±2% during hypoxia. Hematocrit was essentially identical for the two conditions (42.1% vs. 42.0%). Blood viscosity was not significantly different for the two conditions with a mean of 2.89±0.17 cP during normoxia and 2.83±0.19 cP during hypoxia. Likewise, plasma viscosity was not significantly different for the two conditions with a mean of 1.19±0.04 cP during normoxia and 1.19±0.05 cP during hypoxia. CONCLUSION: Such results suggest that acute normobaric hypoxia, independent of changes in hematocrit, does not increase blood or plasma viscosity.


2001 ◽  
Vol 281 (5) ◽  
pp. E1029-E1036 ◽  
Author(s):  
Raymond R. Russell ◽  
Deborah Chyun ◽  
Steven Song ◽  
Robert S. Sherwin ◽  
William V. Tamborlane ◽  
...  

Insulin-induced hypoglycemia occurs commonly in intensively treated patients with type 1 diabetes, but the cardiovascular consequences of hypoglycemia in these patients are not known. We studied left ventricular systolic [left ventricular ejection fraction (LVEF)] and diastolic [peak filling rate (PFR)] function by equilibrium radionuclide angiography during insulin infusion (12 pmol · kg−1 · min−1) under either hypoglycemic (∼2.8 mmol/l) or euglycemic (∼5 mmol/l) conditions in intensively treated patients with type 1 diabetes and healthy nondiabetic subjects ( n = 9 for each). During hypoglycemic hyperinsulinemia, there were significant increases in LVEF (ΔLVEF = 11 ± 2%) and PFR [ΔPFR = 0.88 ± 0.18 end diastolic volume (EDV)/s] in diabetic subjects as well as in the nondiabetic group (ΔLVEF = 13 ± 2%; ΔPFR = 0.79 ± 0.17 EDV/s). The increases in LVEF and PFR were comparable overall but occurred earlier in the nondiabetic group. A blunted increase in plasma catecholamine, cortisol, and glucagon concentrations occurred in response to hypoglycemia in the diabetic subjects. During euglycemic hyperinsulinemia, LVEF also increased in both the diabetic (ΔLVEF = 7 ± 1%) and nondiabetic (ΔLVEF = 4 ± 2%) groups, but PFR increased only in the diabetic group. In the comparison of the responses to hypoglycemic and euglycemic hyperinsulinemia, only the nondiabetic group had greater augmentation of LVEF, PFR, and cardiac output in the hypoglycemic study ( P < 0.05 for each). Thus intensively treated type 1 diabetic patients demonstrate delayed augmentation of ventricular function during moderate insulin-induced hypoglycemia. Although diabetic subjects have a more pronounced cardiac response to hyperinsulinemia per se than nondiabetic subjects, their response to hypoglycemia is blunted.


2021 ◽  
Vol 11 (4) ◽  
pp. 308
Author(s):  
Valentina Bravatà ◽  
Walter Tinganelli ◽  
Francesco P. Cammarata ◽  
Luigi Minafra ◽  
Marco Calvaruso ◽  
...  

In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI’s hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.


1982 ◽  
Vol 242 (5) ◽  
pp. H805-H809 ◽  
Author(s):  
G. R. Heyndrickx ◽  
P. Muylaert ◽  
J. L. Pannier

alpha-Adrenergic control of the oxygen delivery to the myocardium during exercise was investigated in eight conscious dogs instrumented for chronic measurements of coronary blood flow, left ventricular (LV) pressure, aortic blood pressure, and heart rate and sampling of arterial and coronary sinus blood. After alpha-adrenergic receptor blockade a standard exercise load elicited a significantly greater increase in heart rate, rate of change of LV pressure (LV dP/dt), LV dP/dt/P, and coronary blood flow than was elicited in the unblocked state. In contrast to the response pattern during control exercise, there was no significant change in coronary sinus oxygen tension (PO2), myocardial arteriovenous oxygen difference, and myocardial oxygen delivery-to-oxygen consumption ratio. It is concluded that the normal relationship between myocardial oxygen supply and oxygen demand is modified during exercise after alpha-adrenergic blockade, whereby oxygen delivery is better matched to oxygen consumption. These results indicate that the increase in coronary blood flow and oxygen delivery to the myocardium during normal exercise is limited by alpha-adrenergic vasoconstriction.


Author(s):  
Mieczysław Dutka ◽  
Rafał Bobiński ◽  
Wojciech Wojakowski ◽  
Tomasz Francuz ◽  
Celina Pająk ◽  
...  

AbstractOsteoprotegerin (OPG) is a glycoprotein involved in the regulation of bone remodelling. OPG regulates osteoclast activity by blocking the interaction between the receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL). More and more studies confirm the relationship between OPG and cardiovascular diseases. Numerous studies have confirmed that a high plasma concentration of OPG and a low concentration of tumour necrosis factor–related apoptosis inducing ligand (TRAIL) together with a high OPG/TRAIL ratio are predictors of poor prognosis in patients with myocardial infarction. A high plasma OPG concentration and a high ratio of OPG/TRAIL in the acute myocardial infarction are a prognostic indicator of adverse left ventricular remodelling and of the development of heart failure. Ever more data indicates the participation of OPG in the regulation of the function of vascular endothelial cells and the initiation of the atherosclerotic process in the arteries. Additionally, it has been shown that TRAIL has a protective effect on blood vessels and exerts an anti-atherosclerotic effect. The mechanisms of action of both OPG and TRAIL within the cells of the vascular wall are complex and remain largely unclear. However, these mechanisms of action as well as their interaction in the local vascular environment are of great interest to researchers. This article presents the current state of knowledge on the mechanisms of action of OPG and TRAIL in the circulatory system and their role in cardiovascular diseases. Understanding these mechanisms may allow their use as a therapeutic target in cardiovascular diseases in the future.


1986 ◽  
Vol 61 (6) ◽  
pp. 2136-2143 ◽  
Author(s):  
D. C. Curran-Everett ◽  
K. McAndrews ◽  
J. A. Krasney

The effects of acute hypoxia on regional pulmonary perfusion have been studied previously in anesthetized, artificially ventilated sheep (J. Appl. Physiol. 56: 338–342, 1984). That study indicated that a rise in pulmonary arterial pressure was associated with a shift of pulmonary blood flow toward dorsal (nondependent) areas of the lung. This study examined the relationship between the pulmonary arterial pressor response and regional pulmonary blood flow in five conscious, standing ewes during 96 h of normobaric hypoxia. The sheep were made hypoxic by N2 dilution in an environmental chamber [arterial O2 tension (PaO2) = 37–42 Torr, arterial CO2 tension (PaCO2) = 25–30 Torr]. Regional pulmonary blood flow was calculated by injecting 15-micron radiolabeled microspheres into the superior vena cava during normoxia and at 24-h intervals of hypoxia. Pulmonary arterial pressure increased from 12 Torr during normoxia to 19–22 Torr throughout hypoxia (alpha less than 0.049). Pulmonary blood flow, expressed as %QCO or ml X min-1 X g-1, did not shift among dorsal and ventral regions during hypoxia (alpha greater than 0.25); nor were there interlobar shifts of blood flow (alpha greater than 0.10). These data suggest that conscious, standing sheep do not demonstrate a shift in pulmonary blood flow during 96 h of normobaric hypoxia even though pulmonary arterial pressure rises 7–10 Torr. We question whether global hypoxic pulmonary vasoconstriction is, by itself, beneficial to the sheep.


Author(s):  
Rui Xiao ◽  
Shengquan Luo ◽  
Ting Zhang ◽  
Yankai Lv ◽  
Tao Wang ◽  
...  

Activation of the CaSR (extracellular calcium-sensing receptor) has been recognized as a critical mediator of hypoxia-induced pulmonary hypertension. Preventive targeting of the early initiating phase as well as downstream events after CaSR activation remains unexplored. As a representative of the G protein-coupled receptor family, CaSR polymerizes on cell surface upon stimulation. Immunoblotting together with MAL-PEG technique identified a reactive oxygen species-sensitive CaSR polymerization through its extracellular domain in pulmonary artery smooth muscle cells upon exposure to acute hypoxia. Fluorescence resonance energy transfer screening employing blocking peptides determined that cycteine129/131 residues in the extracellular domain of CaSR formed intermolecular disulfide bonds to promote CaSR polymerization. The monitoring of intracellular Ca 2+ signal highlighted the pivotal role of CaSR polymerization in its activation. In contrast, the blockade of disulfide bonds formation using a peptide decreased both CaSR and hypoxia-induced mitogenic factor expression as well as other hypoxic-related genes in vitro and in vivo and attenuated pulmonary hypertension development in rats. The blocking peptide did not affect systemic arterial oxygenation in vivo but inhibited acute hypoxia-induced pulmonary vasoconstriction. Pharmacokinetic analyses revealed a more efficient lung delivery of peptide by inhaled nebulizer compared to intravenous injection. In addition, the blocking peptide did not affect systemic arterial pressure, body weight, left ventricular function, liver, or kidney function or plasma Ca 2+ level. In conclusion, a peptide blocking CaSR polymerization reduces its hypoxia-induced activation and downstream events leading to pulmonary hypertension and represents an attractive inhaled preventive alternative worthy of further development.


Sign in / Sign up

Export Citation Format

Share Document