Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27 Kip1 and p57 Kip2 during mouse development

2001 ◽  
Vol 203 (2) ◽  
pp. 77-87 ◽  
Author(s):  
H. Nagahama ◽  
S. Hatakeyama ◽  
K. Nakayama ◽  
M. Nagata ◽  
K. Tomita ◽  
...  
Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3703-3713 ◽  
Author(s):  
M. Bouchard ◽  
P. Pfeffer ◽  
M. Busslinger

Pax2 and Pax5 arose by gene duplication at the onset of vertebrate evolution and have since diverged in their developmental expression patterns. They are expressed in different organs of the mouse embryo except for their coexpression at the midbrain-hindbrain boundary (MHB), which functions as an organizing center to control midbrain and cerebellum development. During MHB development, Pax2 expression is initiated prior to Pax5 transcription, and Pax2(−/−) embryos fail to generate the posterior midbrain and cerebellum, whereas Pax5(−/−) mice exhibit only minor patterning defects in the same brain regions. To investigate whether these contrasting phenotypes are caused by differences in the temporal expression or biochemical activity of these two transcription factors, we have generated a knock-in (ki) mouse, which expresses a Pax5 minigene under the control of the Pax2 locus. Midbrain and cerebellum development was entirely rescued in Pax2(5ki/5ki) embryos. Pax5 could furthermore completely substitute for the Pax2 function during morphogenesis of the inner ear and genital tracts, despite the fact that the Pax5 transcript of the Pax2(5ki)allele was expressed only at a fivefold lower level than the wild-type Pax2 mRNA. As a consequence, the Pax2(5ki)allele was able to rescue most but not all Pax2 mutant defects in the developing eye and kidney, both of which are known to be highly sensitive to Pax2 protein dosage. Together these data demonstrate that the transcription factors Pax2 and Pax5 have maintained equivalent biochemical functions since their divergence early in vertebrate evolution.


2010 ◽  
Vol 27 (8) ◽  
pp. 1509-1531 ◽  
Author(s):  
Zohar Ben-Moshe ◽  
Gad Vatine ◽  
Shahar Alon ◽  
Adi Tovin ◽  
Philipp Mracek ◽  
...  

2001 ◽  
Vol 114 (10) ◽  
pp. 1811-1820 ◽  
Author(s):  
M.E. Miller ◽  
F.R. Cross

Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.


2020 ◽  
Author(s):  
Yuanyuan Xu ◽  
Shuping Zhang ◽  
Yujun Guo ◽  
Wen Chen ◽  
Yanqun Huang

Abstract Background: The CDS gene encodes the CDP-diacylglycerol synthase enzyme that catalyzes the formation of CDP-diacylglycerol (CDP-DAG) from phosphatidic acid. At present, there are no reports of CDS2 in birds. Here, we identified chicken CDS2 transcripts by combining conventional RT- PCR amplification, 5' RACE (Fig. 1A), and 3' RACE, explored the spatio-temporal expression profiles of total CDS2 and the longest transcript variant CDS2-4, and investigated the effect of exogenous insulin on total the mRNA level of CDS2 by quantitative real-time PCR. Results: Four transcripts of chicken CDS2 (CDS2-1, -2, -3, and -4) were identified, which were alternatively spliced at the 3′-untranslated region (UTR). CDS2 was widely expressed in all tissues examined and the longest variant CDS2-4 was the major transcript. Both total CDS2 and CDS2-4 were prominently expressed in adipose tissue and the heart, and exhibited low expression in the liver and pectoralis of 49 day-old chickens. Quantitative real-time PCR revealed that total CDS2 and CDS2-4 had different spatio-temporal expression patterns in chicken. Total CDS2 exhibited a similar temporal expression tendency with a high level in the later period of incubation (embryonic day 19 [E19] or 1-day-old) in the brain, liver, and pectoralis. While CDS2-4 presented a distinct temporal expression pattern in these tissues, CDS2-4 levels peaked at 21 days in the brain and pectoralis, while liver CDS2-4 mRNA levels were highest at the early stage of hatching (E10). Total CDS2 (P < 0.001) and CDS2-4 (P = 0.0090) mRNA levels in the liver were differentially regulated throughout development of the chicken. Exogenous insulin significantly downregulated the level of total CDS2 at 240 min in the pectoralis of Silky chickens (P < 0.01). Total CDS2 levels in the liver of Silky chickens were higher than that of the broiler in the basal state and after insulin stimulation. Conclusion: Chicken CDS2 has multiple transcripts with variation at the 3′-UTR, which was prominently expressed in adipose tissue. Total CDS2 and CDS2-4 presented distinct spatio-temporal expression patterns, and they were differentially regulated with age in liver. Insulin could regulate chicken CDS2 levels in a breed- and tissue-specific manner.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Habib Haybar ◽  
Mehhdi Shahrouzian ◽  
Zahra Gatavizadeh ◽  
Najmaldin Saki ◽  
Mahmood Maniati ◽  
...  

Objective: Cyclin D1 is an essential protein that acts as a mitogenic sensor. In this manuscript, we discuss the importance of cyclin D1 in oncology and cardio-oncology, and we challenge the prognostic and therapeutic response values of cyclin D1 to figure out if it can be a beneficial marker. We also discuss the agents and microRNAs that can be used as a potential therapeutic approach via regulating cyclin D1 expression in oncology and cardio-oncology. Discussion: Clinical significance of cyclin D1 is defined not only in several cancers such as breast cancer, melanoma, and glioblastoma but also in cardiomyocyte regeneration and cardiac hypertrophic growth. Several studies have indicated that the injection of cardiotoxic agents such as doxorubicin (DOX) induces damage to the cardiac system and increases cyclin D expression at single injection, which might be related to DXO-mediated damage in the adult heart. However, cyclin D1 overexpression leads to hypertrophic growth of cardiomyocytes, and cyclin-dependent kinase (CDK)) inhibitors such as p16 do not inhibit the hypertrophic growth of cardiomyocytes. Thus, the reaction is CDK-independent. Conclusions: Cyclin D1 overexpression is positively correlated with tumor progression, treatment response, cardiotoxicity, and poor prognosis. Cyclin D1 expression has an important role in cardiac hypertrophy, and it can be a promising marker in monitoring cardiomyocyte treatment responses, cardioprotection, and cardiotoxicity. Finally, cyclin D1 plays an important role in hypertrophic growth of cardiomyocytes via a novel mechanism. Given all these pieces of evidence, cyclin D1 can be introduced as a favorable biomarker in future cardiology and cardio-oncology.


2018 ◽  
Author(s):  
Xiao-Yong Li ◽  
Michael B. Eisen

AbstractThe maternal factor Zelda is broadly bound to zygotic enhancers during early fly embryogenesis, and has been shown to be important for the expression of a large number of genes. However, its function remains poorly understood. Here, we carried out detailed analysis of the functional role of Zelda on the activities of a group of enhancers that drive patterned gene expression along the anterior -posterior axis. We found that among these enhancers, only one lost its activity entirely when all its Zelda bind sites were mutated. For all others, mutations of all of their Zelda binding sites only had limited effect, which varied temporally and spatially. These results suggest that Zld may exert a quantitative effect on a broad range of enhancers, which presumably is critical to generate highly diverse spatial and temporal expression patterns for different genes in the developmental gene network in fly embryo. Lastly, we found that the observed effect of Zelda site mutations was much stronger when a mutant enhancer was tested using a BAC based reporter construct than a simple reporter construct, suggesting that the effect of Zld is dependent on chromatin environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Siyu Zhang ◽  
Qian Zhang ◽  
Xin Jiang ◽  
Qian Li ◽  
Yaoguo Qin ◽  
...  

High chemosensitivity of insects to volatile organic compounds (VOC) stimuli is mediated by odorant binding proteins (OBPs). In aphids, three OBPs (OBP3, OBP7 and OBP9) are E-β-farnesene (EBF)-binding proteins. Winged aphids are generally more sensitive than wingless aphids to VOCs, thus, wing presence is a phenotypic correlate of olfaction sensitivity. Here, we investigate the detailed temporal expression of these EBF-binding proteins and two other OBPs (OBP6 and OBP10), in the grain aphid Sitobion miscanthi 0 h, 2 h, 1 day, 3 days, 10 days, and 20 days after adult emergence. Both winged and wingless aphids were examined to further uncover phenotypic specification. Then, the expression patterns before and after EBF induction were analyzed. Throughout adulthood, only OBP7 had significantly higher antennal expression in winged aphids; however, there was no significant difference in the antennal expression of OBP3 between wing morphs at most time points. Except it was lower in newly emerged winged aphids but increased rapidly to the same level in wingless aphids at 1 day. OBP9 did not differ in expression between the morphs and was the only OBP that did not exhibit an expression trough at the beginning of the adult stage (0 h). The expression of OBP9 remained relatively stable and high throughout the adult stage in both phenotypes, showing the highest level among the three EBF-binding proteins. After EBF induction, its expression was further up-regulated in both morphs. Therefore, this protein may be an important molecule for EBF recognition in aphids. OBP7 strongly responded to EBF but only in winged aphids, suggesting that this protein is important in the more sensitive EBF recognition process of winged aphids. In addition, the antennal expression level of OBP3 did not respond to EBF induction. These findings revealed a temporal expression pattern of OBPs in aphids and showed that figuring out the pattern is critical for correctly selecting morphs and sampling times, which will support the discovery of reliable findings and allow solid conclusions to be drawn. Our findings also inspire on the interaction mode of the three EBF-binding proteins in relation to EBF perception in aphids.


Sign in / Sign up

Export Citation Format

Share Document