scholarly journals Acquired resistance to irradiation or docetaxel is not associated with cross-resistance to cisplatin in prostate cancer cell lines

Author(s):  
Lukas Donix ◽  
Holger H. H. Erb ◽  
Claudia Peitzsch ◽  
Anna Dubrovska ◽  
Manuel Pfeifer ◽  
...  

Abstract Purpose Platinum chemotherapy can be considered to treat metastatic castration-resistant prostate cancer (mCRPC) with features of neuroendocrine differentiation. However, platinum compounds are generally only applied after the failure of multiple prior-line treatment options. This study investigated whether acquired resistance against ionizing radiation or docetaxel chemotherapy—two commonly applied treatment modalities in prostate cancer—influences the cisplatin (CDDP) tolerance in mCRPC cell line models. Methods Age-matched parental as well as radio- or docetaxel-resistant DU145 and PC-3 cell lines were treated with CDDP and their sensitivity was assessed by measurements of growth rates, viability, apoptosis, metabolic activity and colony formation ability. Results The data suggest that docetaxel resistance does not influence CDDP tolerance in all tested docetaxel-resistant cell lines. Radio-resistance was associated with sensitization to CDDP in PC-3, but not in DU145 cells. In general, DU145 cells tolerated higher CDDP concentrations than PC-3 cells regardless of acquired resistances. Furthermore, non-age-matched treatment-naïve PC-3 cells exhibited significantly different CDDP tolerances. Conclusion Like patients, different mCRPC cell lines exhibit significant variability regarding CDDP tolerance. The presented in vitro data suggest that previous radiation treatment may be associated with a moderate sensitization to CDDP in an isogenic and age-matched setting. Therefore, previous radiotherapy or docetaxel chemotherapy might be no contraindication against initiation of platinum chemotherapy in selected mCRPC patients.

Author(s):  
Tamara Rothenburger ◽  
Dominique Thomas ◽  
Yannick Schreiber ◽  
Paul R. Wratil ◽  
Tamara Pflantz ◽  
...  

Abstract Background SAMHD1 mediates resistance to anti-cancer nucleoside analogues, including cytarabine, decitabine, and nelarabine that are commonly used for the treatment of leukaemia, through cleavage of their triphosphorylated forms. Hence, SAMHD1 inhibitors are promising candidates for the sensitisation of leukaemia cells to nucleoside analogue-based therapy. Here, we investigated the effects of the cytosine analogue CNDAC, which has been proposed to be a SAMHD1 inhibitor, in the context of SAMHD1. Methods CNDAC was tested in 13 acute myeloid leukaemia (AML) cell lines, in 26 acute lymphoblastic leukaemia (ALL) cell lines, ten AML sublines adapted to various antileukaemic drugs, 24 single cell-derived clonal AML sublines, and primary leukaemic blasts from 24 AML patients. Moreover, 24 CNDAC-resistant sublines of the AML cell lines HL-60 and PL-21 were established. The SAMHD1 gene was disrupted using CRISPR/Cas9 and SAMHD1 depleted using RNAi, and the viral Vpx protein. Forced DCK expression was achieved by lentiviral transduction. SAMHD1 promoter methylation was determined by PCR after treatment of genomic DNA with the methylation-sensitive HpaII endonuclease. Nucleoside (analogue) triphosphate levels were determined by LC-MS/MS. CNDAC interaction with SAMHD1 was analysed by an enzymatic assay and by crystallisation. Results Although the cytosine analogue CNDAC was anticipated to inhibit SAMHD1, SAMHD1 mediated intrinsic CNDAC resistance in leukaemia cells. Accordingly, SAMHD1 depletion increased CNDAC triphosphate (CNDAC-TP) levels and CNDAC toxicity. Enzymatic assays and crystallisation studies confirmed CNDAC-TP to be a SAMHD1 substrate. In 24 CNDAC-adapted acute myeloid leukaemia (AML) sublines, resistance was driven by DCK (catalyses initial nucleoside phosphorylation) loss. CNDAC-adapted sublines displayed cross-resistance only to other DCK substrates (e.g. cytarabine, decitabine). Cell lines adapted to drugs not affected by DCK or SAMHD1 remained CNDAC sensitive. In cytarabine-adapted AML cells, increased SAMHD1 and reduced DCK levels contributed to cytarabine and CNDAC resistance. Conclusion Intrinsic and acquired resistance to CNDAC and related nucleoside analogues are driven by different mechanisms. The lack of cross-resistance between SAMHD1/ DCK substrates and non-substrates provides scope for next-line therapies after treatment failure.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 142 ◽  
Author(s):  
Mariusz L. Hartman ◽  
Malgorzata Sztiller-Sikorska ◽  
Anna Gajos-Michniewicz ◽  
Malgorzata Czyz

The clinical benefit of MAPK pathway inhibition in BRAF-mutant melanoma patients is limited by the development of acquired resistance. Using drug-naïve cell lines derived from tumor specimens, we established a preclinical model of melanoma resistance to vemurafenib or trametinib to provide insight into resistance mechanisms. Dissecting the mechanisms accompanying the development of resistance, we have shown that (i) most of genetic and non-genetic alterations are triggered in a cell line- and/or drug-specific manner; (ii) several changes previously assigned to the development of resistance are induced as the immediate response to the extent measurable at the bulk levels; (iii) reprogramming observed in cross-resistance experiments and growth factor-dependence restricted by the drug presence indicate that phenotypic plasticity of melanoma cells largely contributes to the sustained resistance. Whole-exome sequencing revealed novel genetic alterations, including a frameshift variant of RBMX found exclusively in phospho-AKThigh resistant cell lines. There was no similar pattern of phenotypic alterations among eleven resistant cell lines, including expression/activity of crucial regulators, such as MITF, AXL, SOX, and NGFR, which suggests that patient-to-patient variability is richer and more nuanced than previously described. This diversity should be considered during the development of new strategies to circumvent the acquired resistance to targeted therapies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 434-434 ◽  
Author(s):  
Jason Smith ◽  
Katherine J. Walsh ◽  
Cassandra L Jacobs ◽  
Qingquan Liu ◽  
Siyao Fan ◽  
...  

Abstract Abstract 434 Background Histone deacetylase inhibitors (HDACis) have demonstrated significant clinical activity in hematologic malignancies; however, single agent response rates have ranged between 20–50% with the duration of response often measured in months, suggesting that drug resistance is a major mode of failure. The pathways through which these agents work and the means by which tumors develop resistance to them are poorly understood. Combination therapy targeting multiple oncogenic pathways holds the promise to improve upon both the depth and durability of these responses. We investigated the mechanisms of inherent and acquired resistance to HDACis in a broad range of lymphomas. By detailing the molecular pathways implicated in resistance to HDACi, we sought to identify novel combinations of compounds that could overcome potential mechanisms that confer resistance. Methods and Results We tested two separate HDACis, LBH589 and SAHA in 51 cell lines representing a wide range of lymphomas including Burkitt lymphoma, diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma, and Hodgkin lymphoma. Gene expression array data was generated for all these cell lines. We then identified genes that were significantly associated with resistance to both LBH589 and SAHA (p<.01) and applied hierarchical clustering to identify the functional significance of these genes. Histology was not predictive of sensitivity to either HDACi. These data were then analyzed using gene set enrichment to identify known molecular pathways associated with resistance. Activation of JAK/STAT signaling was found to be a major determinant of resistance among the cell lines that were relatively resistant to HDACi. (P<0.001, FDR <.25). To determine whether these genes that we found to be associated with resistance reflected potential mechanisms of acquired resistance to HDACi therapy, we separately engineered resistance to LBH589 and SAHA in three DLBCL cell lines (LY3, BJAB, Farage) through incremental dose escalation over a period of up to 6 months. Each of these three cell lines demonstrated sustained growth at drug concentrations that were at or above their original IC50. Each of these cell lines were then exposed to the other HDACi and tested for cross resistance. In each case, the cell lines demonstrated complete cross-resistance to the other drug. We then profiled the gene expression of these cell lines that had acquired resistance. Similar to our previous results, these cell lines demonstrated increased signaling through the JAK/STAT pathway, suggesting that mechanisms of inherent and acquired resistance are similar. We therefore reasoned that combining HDAC and JAK inhibition may overcome both inherent and acquired resistance. To investigate this hypothesis, we tested LBH589 and INCB018424, a JAK1/2 inhibitor, alone and in combination in the LY3, TMD-8, U2932, and BJAB cell lines. While INCB018424 demonstrated no single agent cytotoxicity, it yielded a high degree of synergy when combined with LBH589 with the combination index computed by the Chou-Talalay method ranging from .19 to .9. Conclusion HDACis show single agent activity in the treatment of a number of hematologic malignancies, however most patients develop resistance to these drugs after relatively short-lived remissions. Thus, the greatest promise of these drugs may lie in combination with other agents that target molecular pathways that underlie resistance to these drugs. Using gene expression profiling of a broad range of tumor types and sensitivity to HDACis we were able to identify activation of the JAK/STAT pathway as a common feature of inherent and acquired resistance to HDACis. We combined the JAK1/2 inhibitor INCB018424 with LBH589 and demonstrated a high degree of synergy. As the number of small molecule inhibitors with clinical activity increases, the need to identify rational preclinical combinations becomes greater. Pairing gene expression profiling and resistant cell lines is a promising approach to the selection of combinations likely to maximize clinical benefit while limiting toxicity. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 10566-10566
Author(s):  
R. Singal ◽  
K. Ramachandran ◽  
G. Gopisetty ◽  
L. Navarro ◽  
E. Gordian ◽  
...  

10566 Background: Defects in the apoptotic pathway contribute to uncontrolled cell proliferation of cancer cells and confer resistance to chemotherapeutic drugs. Understanding the mechanisms of deregulation of apoptosis related genes would enable targeted treatment methods to improve the efficacy of chemotherapy. Growth Arrest and DNA Damage inducible, alpha (GADD45a) mediates cytotoxicity of docetaxel chemotherapy. We examined the mechanism of regulation of GADD45a in prostate cancer cells and the effect of its upregulation on sensitivity to docetaxel chemotherapy. Methods: Levels of GADD45a in Du145, LNCaP and PC3 were analyzed by real time reverse transcriptase PCR and western blotting. DNA methylation was studied by bisulfite sequencing. Chromatin immunoprecipitation was used to study interaction of methyl binding proteins to GADD45 5’ sequence. Cytotoxicity after drug treatment was measured by MTT cell proliferation assay. Apoptosis assays were done by Annexin V/propidium iodide staining followed by flow cytometry. Results: Levels of expression of GADD45a in Du145 and LNCaP cells were lower than that in PC3. A 4 CpG region upstream of the proximal promoter region was methylated in Du145 and LNCaP cells. Methylation was reversed by treatment of Du145 and LNCaP cells with DNA methyl transferase (DNMT) inhibitors such as 5- Azacytidine or 5- Aza deoxycytidine leading to reactivation of GADD45a expression in these cells. This region was also frequently methylated in prostate cancer tissues. Methyl binding protein, MeCP2 was associated with the methylated 4 CpGs in Du145 and knock down of MeCP2 by transfection of MeCP2 siRNA vector in Du145 cells (Du145-MeCP2-ve) led to increased expression of GADD45a, without affecting the methylation status of the gene. Enhanced sensitivity to docetaxel was observed by upregulation of GADD45a in Du145 cells by (a) recombinant expression of GADD45a (b) downregulation of MeCP2 and (c) pretreatment with 5-Azacytidine. Conclusions: GADD45a is frequently deregulated in prostate cancer by methylation of 5’ 4 CpG region and is a potential therapeutic target for treatment of prostate cancer. [Table: see text]


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Gravina Giovanni Luca ◽  
Claudio Festuccia ◽  
Pierluigi Bonfili ◽  
Mario Di Staso ◽  
Pietro Franzese ◽  
...  

Prostate cancer (Pca) is a heterogeneous disease; its etiology appears to be related to genetic and epigenetic factors. Radiotherapy and hormone manipulation are effective treatments, but many tumors will progress despite these treatments. Molecular imaging provides novel opportunities for image-guided optimization and management of these treatment modalities. Here we reviewed the advances in targeted imaging of key biomarkers of androgen receptor signaling pathways. A computerized search was performed to identify all relevant studies in Medline up to 2013. There are well-known limitations and inaccuracies of current imaging approaches for monitoring biological changes governing tumor progression. The close integration of molecular biology and clinical imaging could ease the development of new molecular imaging agents providing novel tools to monitor a number of biological events that, until a few years ago, were studied by conventional molecular assays. Advances in translational research may represent the next step in improving the oncological outcome of men with Pca who remain at high risk for systemic failure. This aim may be obtained by combining the anatomical properties of conventional imaging modalities with biological information to better predict tumor response to conventional treatments.


2021 ◽  
Author(s):  
Ola Hussein ◽  
Feras Alali ◽  
Ala‐Eddin Al Mustafa ◽  
Ashraf Khalil

Prostate cancer (PCa) is the second most frequently diagnosed malignancy, as well as a leading cause of cancer-related mortality in men globally. Despite the initial response to hormonal targeted therapy, the majority of patients ultimately progress to a lethal form of the disease, castration-resistant prostate cancer (CRPC). Therefore, the objective of this study was to discover and develop novel treatment modalities for CRPC. Chalcones are among the highly attractive scaffolds being investigated for their antitumor activities. A library of 26 chalcone analogs were designed, synthesized and evaluated as potential therapies for CRPC. The design was guided by in-silico ADMET prediction in which analogs with favorable drug-likeness properties were prioritized. The new compounds were synthesized, purified and characterized by extensive structural elucidation studies. The compounds in vitro cytotoxicity was evaluated against two androgen receptor (AR)-negative prostate cancer cell lines (PC3 and DU145). Among the tested compounds, pyridine containing analogs (13, 15 and 16) showed potent antiproliferative activities with IC50 values ranging between 4.32-6.47 µM against PC3 and DU145 cell lines. Detailed biological studies of the lead molecule 16 revealed that it can significantly induce apoptosis through upregulation of Bax and downregulation of Bcl-2. In addition, compound 16 potently inhibited colony formation and reduced cell migration of AR-negative PCa cell lines (PC3 and DU145). The molecular pathway analysis showed that the anticancer activity of compound 16 is associated with blocking of ERK1/2 and Akt activities. Furthermore, compound 16 inhibited angiogenesis in the chick chorioallantoic membrane (CAM) model as compared to control. Structure-activity relationship study revealed that the cytotoxicity could dramatically improve via changing the methoxylation pattern by more than 2-folds (IC50 << 2.5 μM). These results indicate that pyridine-based chalcones could serve as promising lead molecules for the treatment of CRPC; thus, further in vitro and in vivo studies are warranted.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peng Xue ◽  
Miao Yan ◽  
Kunpeng Wang ◽  
Jinbao Gu ◽  
Bing Zhong ◽  
...  

This study aimed to explore the function of LINC00665 on the proliferation and metastasis of prostate cancer (PCa), and the potential regulatory mechanisms were also investigated. The expression level of LINC00665 in 50 pairs of PCa tissues and adjacent ones was studied by qRT-PCR, and the associations between LINC00665 and clinicopathological characteristics of PCa patients were analyzed. Control group (sh-NC) and LINC00665 knock-down group (sh-LINC00665) were set in 22RV1 and DU145 cells, respectively. The biological functions of LINC00665 in PCa cell lines were assessed by CCK-8, EdU, Transwell assays, and the nude mouse xenograft model was used to evaluate the tumorigenicity in vivo. In addition, qRT-PCR, Western Blot, RIP and ChIP assays were also used to determine the regulation mechanism of LINC00665 in PCa cell lines. In this study, our results showed that LINC00665 expression level in PCa cancer tissues was significantly up-regulated, compared with that in adjacent ones. Besides, similar results were found in PCa cell lines. Knock-down of LINC00665 significantly attenuated the proliferation and migration ability in 22RV1 and DU145 cells, compared to sh-NC. Mechanically, LINC00665 could interact with EZH2 and LSD1, recruiting them to KLF2 promoter region to inhibit its transcription. Moreover, the tumor-suppressive effects mediated by sh-LINC00665 were significantly reversed through the down-regulation of KLF2. Also, the suppression of LINC00665 impaired tumor growth of PCa in vivo. In summary, LINC00665 exerted the oncogenic functions in PCa cell lines by epigenetically silencing KLF2 expression by binding to EZH2 and LSD1, illuminating a novel mechanism of LINC00665 in the malignant progression of PCa and furnishing a prospective therapeutic biomarker to combat PCa.


2019 ◽  
Vol 20 (16) ◽  
pp. 3936 ◽  
Author(s):  
Yohei Sekino ◽  
Xiangrui Han ◽  
Takafumi Kawaguchi ◽  
Takashi Babasaki ◽  
Keisuke Goto ◽  
...  

Recent studies have reported that TUBB3 overexpression is involved in docetaxel (DTX) resistance in prostate cancer (PCa). The aim of this study was to clarify the role of TUBB3 in DTX and cabazitaxel (CBZ) resistance, and cross-resistance between DTX and CBZ in PCa. We analyzed the effect of TUBB3 knockdown on DTX and CBZ resistance and examined the interaction between TUBB3 and PTEN. We also investigated the role of phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) in DTX and CBZ resistance. TUBB3 expression was upregulated in DTX-resistant and CBZ-resistant cells. TUBB3 knockdown re-sensitized DTX-resistant cells to DTX and CBZ-resistant cells to CBZ. Additionally, TUBB3 knockdown re-sensitized DTX-resistant cell lines to CBZ, indicating that TUBB3 mediates cross-resistance between DTX and CBZ. Knockdown of TUBB3 enhanced PTEN expression, and PTEN knockout enhanced TUBB3 expression. LY294002 suppressed TUBB3 expression in DTX-resistant and CBZ-resistant cell lines. LY294002 re-sensitized DTX-resistant cell lines to DTX and CBZ-resistant cell lines to CBZ. These results suggest that TUBB3 is involved in DTX resistance and CBZ resistance. A combination of LY294002/DTX and that of LY294002/CBZ could be potential strategies for PCa treatment.


Sign in / Sign up

Export Citation Format

Share Document