Comparative development of Eimeria tenella (Apicomplexa) in host cells in vitro

2003 ◽  
Vol 90 (4) ◽  
pp. 301-304 ◽  
Author(s):  
J. Tierney ◽  
G. Mulcahy
2016 ◽  
Vol 229 ◽  
pp. 93-98 ◽  
Author(s):  
S. Hessenberger ◽  
G. Schatzmayr ◽  
K. Teichmann

Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 11
Author(s):  
Xinlei Yan ◽  
Wenying Han ◽  
Xianyong Liu ◽  
Xun Suo

Egress plays a vital role in the life cycle of apicomplexan parasites including Eimeria tenella, which has been attracting attention from various research groups. Many recent studies have focused on early egress induced by immune molecules to develop a new method of apicomplexan parasite elimination. In this study, we investigated whether nitric oxide (NO), an immune molecule produced by different types of cells in response to cytokine stimulation, could induce early egress of eimerian sporozoites in vitro. Eimeria tenella sporozoites were extracted and cultured in primary chicken kidney cells. The number of sporozoites egressed from infected cells was analyzed by flow cytometry after treatment with NO released by sodium nitroferricyanide (II) dihydrate. The results showed that exogenous NO stimulated the rapid egress of E. tenella sporozoites from primary chicken kidney cells before replication of the parasite. We also found that egress was dependent on intra-parasitic calcium ion (Ca2+) levels and no damage occurred to host cells after egress. The virulence of egressed sporozoites was significantly lower than that of fresh sporozoites. The results of this study contribute to a novel field examining the interactions between apicomplexan parasites and their host cells, as well as that of the clearance of intracellular pathogens by the host immune system.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhan Liu ◽  
Xiangfei Geng ◽  
Qiping Zhao ◽  
Shunhai Zhu ◽  
Hongyu Han ◽  
...  

Abstract Background Chicken coccidiosis is a parasitic disease caused by Eimeria of Apicomplexa, which has caused great economic loss to the poultry breeding industry. Host vimentin is a key protein in the process of infection of many pathogens. In an earlier phosphorylation proteomics study, we found that the phosphorylation level of host vimentin was significantly regulated after Eimeria tenella sporozoite infection. Therefore, we explored the role of host vimentin in the invasion of host cells by sporozoites. Methods Chicken vimentin protein was cloned and expressed. We used qPCR, western blotting, and indirect immunofluorescence to detect levels of mRNA transcription, translation, and phosphorylation, and changes in the distribution of vimentin after E. tenella sporozoite infection. The sporozoite invasion rate in DF-1 cells treated with vimentin polyclonal antibody or with small interfering RNA (siRNA), which downregulated vimentin expression, was assessed by an in vitro invasion test. Results The results showed that vimentin transcription and translation levels increased continually at 6–72 h after E. tenella sporozoite infection, and the total phosphorylation levels of vimentin also changed. About 24 h after sporozoite infection, vimentin accumulated around sporozoites in DF-1 cells. Treating DF-1 cells with vimentin polyclonal antibody or downregulating vimentin expression by siRNA significantly improved the invasion efficiency of sporozoites. Conclusion In this study, we showed that vimentin played an inhibitory role during the invasion of sporozoites. These data provided a foundation for clarifying the relationship between Eimeria and the host. Graphical Abstract


Author(s):  
Jogendra Singh Nim ◽  
Mohit Yadav ◽  
Lalit Kumar Gautam ◽  
Chaitali Ghosh ◽  
Shakti Sahi ◽  
...  

Background: Xenorhabdus nematophila maintains species-specific mutual interaction with nematodes of Steinernema genus. Type II Toxin Antitoxin (TA) systems, the mazEF TA system controls stress and programmed cell death in bacteria. Objective: This study elucidates the functional characterization of Xn-mazEF, a mazEF homolog in X. nematophila by computational and in vitro approaches. Methods: 3 D- structural models for Xn-MazE toxin and Xn-MazF antitoxin were generated, validated and characterized for protein - RNA interaction analysis. Further biological and cellular functions of Xn-MazF toxin were also predicted. Molecular dynamics simulations of 50ns for Xn-MazF toxin complexed with nucleic acid units (DU, RU, RC, and RU) were performed. The MazF toxin and complete MazEF operon were endogenously expressed and monitored for the killing of Escherichia coli host cells under arabinose induced tightly regulated system. Results: Upon induction, E. coli expressing toxin showed rapid killing within four hours and attained up to 65% growth inhibition, while the expression of the entire operon did not show significant killing. The observation suggests that the Xn-mazEF TA system control transcriptional regulation in X. nematophila and helps to manage stress or cause toxicity leading to programmed death of cells. Conclusion: The study provides insights into structural and functional features of novel toxin, XnMazF and provides an initial inference on control of X. nematophila growth regulated by TA systems.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 437
Author(s):  
Dean Gilham ◽  
Audrey L. Smith ◽  
Li Fu ◽  
Dalia Y. Moore ◽  
Abenaya Muralidharan ◽  
...  

Effective therapeutics are urgently needed to counter infection and improve outcomes for patients suffering from COVID-19 and to combat this pandemic. Manipulation of epigenetic machinery to influence viral infectivity of host cells is a relatively unexplored area. The bromodomain and extraterminal (BET) family of epigenetic readers have been reported to modulate SARS-CoV-2 infection. Herein, we demonstrate apabetalone, the most clinical advanced BET inhibitor, downregulates expression of cell surface receptors involved in SARS-CoV-2 entry, including angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase 4 (DPP4 or CD26) in SARS-CoV-2 permissive cells. Moreover, we show that apabetalone inhibits SARS-CoV-2 infection in vitro to levels comparable to those of antiviral agents. Taken together, our study supports further evaluation of apabetalone to treat COVID-19, either alone or in combination with emerging therapeutics.


2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.


Parasitology ◽  
2021 ◽  
Vol 148 (6) ◽  
pp. 712-725
Author(s):  
Arnar K. S. Sandholt ◽  
Feifei Xu ◽  
Robert Söderlund ◽  
Anna Lundén ◽  
Karin Troell ◽  
...  

Abstract


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Hongfang Ma ◽  
Rui Li ◽  
Longguang Jiang ◽  
Songlin Qiao ◽  
Xin-xin Chen ◽  
...  

AbstractPorcine reproductive and respiratory syndrome (PRRS) is a serious disease burdening global swine industry. Infection by its etiological agent, PRRS virus (PRRSV), shows a highly restricted tropism of host cells and has been demonstrated to be mediated by an essential scavenger receptor (SR) CD163. CD163 fifth SR cysteine-rich domain (SRCR5) is further proven to play a crucial role during viral infection. Despite intense research, the involvement of CD163 SRCR5 in PRRSV infection remains to be elucidated. In the current study, we prepared recombinant monkey CD163 (moCD163) SRCR5 and human CD163-like homolog (hCD163L1) SRCR8, and determined their crystal structures. After comparison with the previously reported crystal structure of porcine CD163 (pCD163) SRCR5, these structures showed almost identical structural folds but significantly different surface electrostatic potentials. Based on these differences, we carried out mutational research to identify that the charged residue at position 534 in association with the one at position 561 were important for PRRSV-2 infection in vitro. Altogether the current work sheds some light on CD163-mediated PRRSV-2 infection and deepens our understanding of the viral pathogenesis, which will provide clues for prevention and control of PRRS.


Sign in / Sign up

Export Citation Format

Share Document