scholarly journals Calc-alkaline volcanic rocks and zircon ages of the late Tonian: early Cryogenian arc-related Big Naryn Complex in the Eastern Djetim-Too Range, Middle Tianshan block, Kyrgyzstan

Author(s):  
Baiansuluu Terbishalieva ◽  
Martin Jan Timmerman ◽  
Alexander Mikolaichuk ◽  
Uwe Altenberger ◽  
Jiří Sláma ◽  
...  

AbstractThe Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U–Pb zircon crystallization ages of 726.1 ± 2.2 Ma and 720.3 ± 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian–early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33–1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 ± 7 Ma 40Ar/39Ar age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.

2020 ◽  
Vol 50 (1) ◽  
pp. 253-268 ◽  
Author(s):  
Magnus Ripa ◽  
Michael B. Stephens

AbstractTrachyandesitic to trachybasaltic lavas, interlayered siliciclastic sedimentary rocks and subaerial ignimbrites with a rhyolitic to trachydacitic composition lie unconformably above metamorphic rocks in west-central Sweden. These volcanic rocks erupted at 1711 + 7/−6 to 1691 ± 5 Ma and belong to a high-K, calc-alkaline to shoshonitic suite deposited in a continental arc setting. Positive ɛNd values and Nb/Yb ratios in the trachyandesitic to trachybasaltic rocks indicate an enriched mantle source. Coeval, 1710 ± 11 to 1681 ± 16 Ma plutonic and subvolcanic rocks are mainly granitic or quartz syenitic in composition. Subordinate components include quartz monzonite, quartz monzodiorite and monzogabbro or gabbro. ɛNd values in the range −1.0 to + 1.1 overlap with those in the inferred 1.9–1.8 Ga source rocks. All these rocks belong to the youngest phase of the lithodemic unit referred to as the Transscandinavian Igneous Belt. This magmatic province extends in a roughly NNW direction for at least 900 km, variably deformed and metamorphosed equivalents occurring inside and beneath younger orogenic belts to the south (Sveconorwegian) and north (Caledonian). The part of the province in west-central Sweden addressed here represents a far-field and shallow crustal component in this 1.7 Ga accretionary orogenic system.


2020 ◽  
Vol 157 (12) ◽  
pp. 2067-2080 ◽  
Author(s):  
P. Alasino ◽  
C. Casquet ◽  
C. Galindo ◽  
R. Pankhurst ◽  
C. Rapela ◽  
...  

AbstractWe report a study of whole-rock O–H–Sr–Nd isotopes of Ordovician igneous and metamorphic rocks exposed at different crustal palaeodepths along c. 750 km in the Sierras Pampeanas, NW Argentina. The isotope compositions preserved in the intermediate rocks (mostly tonalite) (average δ18O = +8.7 ± 0.5‰, δD = −73 ± 14‰, 87Sr/86Srt = 0.7088 ± 0.0001 and εNdt = −4.5 ± 0.6) show no major difference from those of most of the mafic rocks (average δ18O = +8 ± 0.8‰, δD = −84 ± 18‰, 87Sr/86Srt = 0.7082 ± 0.0016 and εNdt = −4 ± 1.1), suggesting that most of their magmas acquired their crustal characteristics in the mantle. The estimate of assimilation of crustal material (δ18O = +12.2 ± 1.7‰, δD = −89 ± 21‰, 87Sr/86Srt = 0.7146 ± 0.0034 and εNdt = −6.9 ± 0.7) by the tonalite is in most samples within the range 10–20%. Felsic magmas that reached upper crustal levels had isotope values (δ18O = +9.9 ± 1.5‰, δD= −76 ± 5‰, 87Sr/86Srt = 0.7067 ± 0.0010, εNdt = −3.5 ± 1.4) suggesting that they were not derived by fractionation of the contaminated intermediate magmas, but evolved from different magma batches. Some rocks of the arc, both igneous (mostly gabbro and tonalite) and metamorphic, underwent restricted interaction with meteoric fluids. Reported values of δ18O of magmatic zircons from the Famatinian arc rocks (+6 to +9‰) are comparable to our δ18O whole-rock data, indicating that pervasive oxygen isotope exchange in the lower crust was not a major process after zircon crystallization.


1996 ◽  
Vol 8 (4) ◽  
pp. 407-414 ◽  
Author(s):  
Francisco Hervé ◽  
Jorge Lobato ◽  
Ignacio Ugalde ◽  
Robert J. Pankhurst

Cape Dubouzet is mainly composed of a volcanic-subvolcanic complex of extrusive rhyolitic breccias, a banded rhyolite and a semi-annular body of dacite porphyry rich in xenoliths of metamorphic rocks. Major and REE geochemistry indicate that the volcanic rocks are calc-alkaline and that they are genetically related by fractional crystallization of a plagioclase-bearing assemblage from a common magma. Rb-Sr data suggest that the rhyolitic complex is of Middle-to-Late Jurassic age, and that it is intruded by Late Cretaceous stocks of banded diorite and gabbro. All these rocks are partially covered by moraines whose clasts are of local provenance. Xenoliths in the dacite porphyry suggest that the northern tip of the Antarctic Peninsula is underlain by a metamorphic complex composed of amphibolites, meta-tonalites and pelitic gneiss containing garnet, sillimanite, cordierite, hercynite, and andalucite. Such rocks are not known in the Scotia metamorphic complex, nor in the Trinity Peninsula Group and its low grade metamorphic derivatives, which also occur as rare xenoliths in the dacite. Previous dating of xenoliths collected from the moraines suggested a late Carboniferous age for this amphibolite-grade metamorphism. Both the Jurassic-Cenozoic magmatic arc of the Antarctic Peninsula and the accretionary complex rocks of the Trinity Peninsula Group were thus developed, at least in part, over pre-existing continental crust.


2003 ◽  
Vol 40 (9) ◽  
pp. 1239-1257 ◽  
Author(s):  
Jean-Philippe Clément ◽  
Martial Caroff ◽  
Christophe Hémond ◽  
Jean-Jacques Tiercelin ◽  
Claire Bollinger ◽  
...  

New petrological, geochronological, and geochemical data on basalts, mugearites, peralkaline trachytes, and phonolites from the Baringo–Bogoria Basin, central Kenya Rift, are presented. K–Ar dating indicates that the volcanic rocks were emplaced between 894 ± 13 and 92 ± 5 ka. 87Sr/86Sr ranges from 0.70304 to 0.70692, 143Nd/144Nd from 0.51237 to 0.51295, 206Pb/204Pb from 18.4 to 19.8, 207Pb/204Pb from 15.46 to 15.70, and 208Pb/204Pb from 38.2 to 40.5. Despite a rather restricted sampling area and a relatively short time span ([Formula: see text]820 ka), the mineralogical and geochemical variations are not consistent with a simple cogenetic link between the lavas. The studied area is located in a transition zone between two different lithospheric domains (Tanzanian Craton and Panafrican Mobile Belt). We propose that the petrological and geochemical variations of the studied lavas are essentially linked to the nature of the underlying lithosphere. Some basaltic products underwent carbonate contamination, possibly within the crust. Trachytes and phonolites are derived from different basaltic parents through crustal assimilation coupled with fractional crystallization. One phonolite sample contains primary calcite-rich veinlets. Textural relations and geochemical evidence suggest that there is a direct cogenetic link between these carbonate and phonolite melts. The veinlets are the modal expression of a carbonate component included in all the phonolites from the Baringo–Bogoria Basin.


2001 ◽  
Vol 34 (3) ◽  
pp. 949 ◽  
Author(s):  
E. MPOSKOS ◽  
D. K. KOSTOPOULOS ◽  
A. KROHE

A low-P / high-T metamorphic event (andalusite-sillimanite series) of pre-Alpine age, identified here for the first time, has affected the metapelitic rocks of the Vernon Massif. P-T conditions of metamorphism in the western part of the Massif are estimated at -2.5 kb / 600-610°C, while in the northeastern part they are estimated to have exceeded 4.5 kb / 640°C respectively. Such P-T conditions correspond to geothermal gradients of 68°C/ km and 40°C/km for the western and the northeastern parts of the Massif respectively. The inferred steep geothermal gradients require transport of heat from deeper to shallower levels within the crust, achieved via magmatic intrusions in a continental magmatic arc setting. Alpine overprinting is characterized by P-T metamorphic conditions of ~6 kb / <350°C in the western part and ~9 kb / <570°C in the northeastern part of the Massif respectively. Low-P / high-T metamorphic rocks, occurring as klippen in the Cyclades and as blocks in the ophiolitic milanges of Crete, are interpreted as remnants of the pre-Alpine Pelagonian nappe similar to those occurring in the Vernon Massif.


2020 ◽  
Vol 56 ◽  
pp. 163-187
Author(s):  
Sandra M. Barr ◽  
Susan C. Johnson ◽  
Greg R. Dunning ◽  
Chris E. White ◽  
Adrian F. Park ◽  
...  

New U–Pb zircon ages from volcanic, plutonic, and sedimentary units in the Avalonian Caledonia terrane of southern New Brunswick provide better timing constraints in this geologically complex area. Previous ca. 620 Ma ages from the Broad River Group are now corroborated by additional dates from felsic tuff in the Gordon Falls Formation and rhyolite in the former Fairfield (now East Branch Black River) Formation of 620 ± 5 Ma and 622 ± 1.9 Ma, respectively. Combined with ages ranging from ca. 625 Ma to 615 Ma from crosscutting plutons, the data suggest that the minimum age of the Broad River Group is about 615 Ma. A quartzfeldspar porphyry dyke in mafic volcanic rocks of the previously undated Long Beach Formation yielded an igneous crystallization age of 685 ± 10 Ma, the oldest unit yet dated in the Caledonia terrane but similar in age to porphyry in the Stirling belt in the Avalonian Mira terrane of Nova Scotia. The age of the Coldbrook Group was constrained previously by U–Pb (zircon) ages of volcanic rocks between 560 and 550 Ma as well as by similar ages from comagmatic plutons. Five additional samples from both volcanic and plutonic units lie in the same range of 560–550 Ma, including errors, demonstrating that the Coldbrook Group and related plutons formed in less than 10 million years. Such a large volume of mainly felsic magma erupted and emplaced in a short time span suggests a “supereruption/supervolcano” environment such as the late Cenozoic southwestern USA but not yet recognized at ca. 560–550 Ma elsewhere in Avalonia. Two units yielded Paleozoic ages: felsite of the Bloomsbury Mountain Formation with a zircon population at 427 ± 9 Ma, indicating a Silurian maximum emplacement age, and dacite of the Grassy Lake Formation with several zircon grains at 382.8 ± 8.3 Ma, indicating a maximum age of middle Devonian, the first rocks of this age to be identified in the Caledonia terrane.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


PROMINE ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Retno Anjarwati ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji

The regional tectonic conditions of the KSK Contract of Work are located in the mid-Tertiary magmatic arc (Carlile and Mitchell, 1994) which host a number of epithermal gold deposits (eg, Kelian, Indon, Muro) and significant prospects such as Muyup, Masupa Ria, Gunung Mas and Mirah. Copper-gold mineralization in the KSK Contract of Work is associated with a number of intrusions that have occupied the shallow-scale crust at the Mesozoic metamorphic intercellular junction to the south and continuously into the Lower Tertiary sediment toward the water. This intrusion is interpreted to be part of the Oligocene arc of Central Kalimantan (in Carlile and Mitchell 1994) Volcanic rocks and associated volcanoes are older than intrusions, possibly aged Cretaceous and exposed together with all three contacts (Carlile and Mitchell, 1994) some researchers contribute details about the geological and mineralogical background, and some papers for that are published for the Beruang Kanan region and beyond but no one can confirm the genesis type of the Beruang Kanan region The mineralization of the Beruang Kanan area is generally composed by high yields of epithermal sulphide mineralization. with Cu-Au mineralization This high epithermal sulphide deposition coats the upper part of the Cu-Au porphyry precipitate associated with mineralization processes that are generally controlled by the structure


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Religions ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 545
Author(s):  
Gary Carville

The Second Vatican Council and, in particular, its Constitution on the Sacred Liturgy, changed much in the daily life of the Church. In Ireland, a country steeped in the Catholic tradition but largely peripheral to the theological debates that shaped Vatican II, the changes to liturgy and devotional practice were implemented dutifully over a relatively short time span and without significant upset. But did the hierarchical manner of their reception, like that of the Council itself, mean that Irish Catholics did not receive the changes in a way that deepened their spirituality? And was the popular religious memory of the people lost through a neglect of liturgical piety and its place in the interior life, alongside what the Council sought to achieve? In this essay, Dr Gary Carville will examine the background to the liturgical changes at Vatican II, the contribution to their formulation and implementation by leaders of the Church in Ireland, the experiences of Irish Catholic communities in the reception process, and the ongoing need for a liturgical formation that brings theology, memory, and practice into greater dialogue.


Sign in / Sign up

Export Citation Format

Share Document