scholarly journals Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi

Mycorrhiza ◽  
2021 ◽  
Vol 31 (2) ◽  
pp. 137-148
Author(s):  
Natacha Bodenhausen ◽  
Gabriel Deslandes-Hérold ◽  
Jan Waelchli ◽  
Alain Held ◽  
Marcel G. A. van der Heijden ◽  
...  

AbstractArbuscular mycorrhiza fungi (AMF) are beneficial soil fungi that can promote the growth of their host plants. Accurate quantification of AMF in plant roots is important because the level of colonization is often indicative of the activity of these fungi. Root colonization is traditionally measured with microscopy methods which visualize fungal structures inside roots. Microscopy methods are labor-intensive, and results depend on the observer. In this study, we present a relative qPCR method to quantify AMF in which we normalized the AMF qPCR signal relative to a plant gene. First, we validated the primer pair AMG1F and AM1 in silico, and we show that these primers cover most AMF species present in plant roots without amplifying host DNA. Next, we compared the relative qPCR method with traditional microscopy based on a greenhouse experiment with Petunia plants that ranged from very high to very low levels of AMF root colonization. Finally, by sequencing the qPCR amplicons with MiSeq, we experimentally confirmed that the primer pair excludes plant DNA while amplifying mostly AMF. Most importantly, our relative qPCR approach was capable of discriminating quantitative differences in AMF root colonization and it strongly correlated (Spearman Rho = 0.875) with quantifications by traditional microscopy. Finally, we provide a balanced discussion about the strengths and weaknesses of microscopy and qPCR methods. In conclusion, the tested approach of relative qPCR presents a reliable alternative method to quantify AMF root colonization that is less operator-dependent than traditional microscopy and offers scalability to high-throughput analyses.

2019 ◽  
Vol 97 (4) ◽  
pp. 661-674
Author(s):  
Jazmín Santillán-Manjarrez ◽  
A. Penelope Solis-Hernández ◽  
Patricia Castilla-Hernández ◽  
Ignacio E. Maldonado-Mendoza ◽  
Gilberto Vela-Correa ◽  
...  

Background: Wetlands in Neotropics harbor high fungal diversity, including arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE). This study describes the interaction of plant roots with AMF and DSE in a freshwater wetland belonging to a hotspot of biodiversity.Hypothesis: Differential root colonization between arbuscular mycorrhizal and dark septate endophyte fungi is influenced by plant species and abiotic conditions in a freshwater wetland.  Studied species: Plant species colonized by arbuscular mycorrhizal and dark septate endophyte fungi.Methods: Properties of soils and the water column, floristic composition, root colonization by AMF and DSE, and molecular identification of AMF inside roots were studied.Results: Soils were Gleysol and flooded during the rainy season. Most of identified plant species were herbaceous, with Cyperus articulatus and Mimosa pigra as the dominant species. Seven of 8 analyzed plant species exhibited differential co-colonization between AMF and DSE. Repeated sampling for one year under flooding/dry conditions demonstrated that C. articulatus and M. pigra were mainly associated with DSE and AMF, respectively. A positive correlation between dissolved O2 in the water column and fungal colonization was observed in C. articulatus. Glomerales and Archaeosporales were molecularly identified inside roots containing arbuscules of M. pigra.Conclusions: Findings highlight differential coexistence between AMF and DSE in plant roots; fungal colonization was influenced by flooding/dry conditions in a neotropical wetland; the community of AMF inside arbusculated roots of M. pigra includes at least four clades.


2001 ◽  
Vol 15 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Gladstone Alves da Silva ◽  
Bartolomeu Acioli dos Santos ◽  
Marccus Vinícius Alves ◽  
Leonor Costa Maia

Mycorrhiza are a mutualistic symbiosis between fungi and plant roots, the main benefit to the plant being increased nutrient uptake. The arbuscular is the most important kind of mycorrhiza for agriculture and it is widespread in occurrence and distribution in most ecosystems. The aim of this work was to study the mycorrhizal status of the species of Commelinidae that occur in the State of Pernambuco. Plant roots, collected in ten municipalities, were washed, cleared in KOH, stained with Trypan blue in lactoglycerol and observed under a light microscope in order to assess presence and identification of the mycorrhizal type. Percentage of root colonization was evaluated by the gridline intersect method. Forty specimens representing 30 species were observed. From these specimens, 70% were colonized by arbuscular mycorrhizal fungi (AMF). In one family (Typhaceae), mycorrhizal structures were not observed, in two of them (Eriocaulaceae and Juncaceae) all specimens showed the association, and three families (Commelinaceae, Cyperaceae and Poaceae) presented specimens with or without AMF. In some of the roots, other fungi were observed together with the AMF. The results indicate that AMF are widely distributed among species of Commelinidae in Pernambuco, being probably important for their establishment in the areas visited.


2018 ◽  
Vol 8 (3) ◽  
pp. 147-153
Author(s):  
Hutami Indah Pertiwi ◽  
Sri Wilarso Budi R. ◽  
Arum Sekar Wulandari

Jabon (Anthocepalus cadamba Roxb.) is one of the fast-growing species that naturally spread in some areas of Indonesia. Known as well adapted to some types of soil, and attributes to a quite high of economical prospects value. Interaction of Arbuscular Mycorrhiza Fungi (AMF) symbiotic involve not only between fungi and plant’s root but also involving supporting organisms (bacteria). This bacteria capable to stimulating the development of mycorrhizal hyphae namely as Mycorrhiza Helper Bacteria (MHB). The aims of this research was to discover of bacterial isolates that can stimulate the development of AMF in Jabon seedling and to examine the effectiveness of MHB isolate and AMF toward Jabon growth. The experiment was conducted in Completely Randomized-split splot design with two factors. The main plot was AMF with two levels; without AMF (M0) and with AMF respectively. Bacteria as the sub-plot with 19 levels consist of the control (B0), Isolate of Glomus sp with coding B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16, B17, and B18 respectively. Our experiment result showed that AMF inoculated of Jabon seedling had significantly effect on root colonization and root dry weight. The average of root colonization was 20.2%. Root dry weight increased 4.69% compared to control. Bacteria were suspected as MHB has not provided significant resultsKey words: arbuscular mycorrhizal fungi, jabon, mycorrhizal helper bacteria


2021 ◽  
Vol 11 (11) ◽  
pp. 5297
Author(s):  
Stavros D. Veresoglou ◽  
Leonie Grünfeld ◽  
Magkdi Mola

The roots of most plants host diverse assemblages of arbuscular mycorrhizal fungi (AMF), which benefit the plant hosts in diverse ways. Even though we understand that such AMF assemblages are non-random, we do not fully appreciate whether and how environmental settings can make them more or less predictable in time and space. Here we present results from three controlled experiments, where we manipulated two environmental parameters, habitat connectance and habitat quality, to address the degree to which plant roots in archipelagos of high connectivity and invariable habitats are colonized with (i) less diverse and (ii) easier to predict AMF assemblages. We observed no differences in diversity across our manipulations. We show, however, that mixing habitats and varying connectivity render AMF assemblages less predictable, which we could only detect within and not between our experimental units. We also demonstrate that none of our manipulations favoured any specific AMF taxa. We present here evidence that the community structure of AMF is less responsive to spatio-temporal manipulations than root colonization rates which is a facet of the symbiosis which we currently poorly understand.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


Heliyon ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. e00936 ◽  
Author(s):  
Boubacar A. Kountche ◽  
Mara Novero ◽  
Muhammad Jamil ◽  
Tadao Asami ◽  
Paola Bonfante ◽  
...  

2003 ◽  
Vol 69 (5) ◽  
pp. 2816-2824 ◽  
Author(s):  
Fritz Oehl ◽  
Ewald Sieverding ◽  
Kurt Ineichen ◽  
Paul Mäder ◽  
Thomas Boller ◽  
...  

ABSTRACT The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.


Author(s):  
V.P. Soniya ◽  
P.S. Bhindhu

Background: Magnesium deficiency has become a major nutritional disorder in lateritic soils of Kerala. Appropriate magnesium fertilization is the best strategy to combat deficiency issues. Apart from correcting nutritional deficiency, magnesium fertilization has an influence on the growth of beneficial microbes such as nitrogen fixing bacterias and arbuscular mycorrhizal fungi. The experiment aimed to investigate the effect of magnesium fertilization on crop yield and population rhizosphere micoflora of cowpea in lateritic soils of Kerala.Methods: A pot culture experiment was conducted with a gradient of magnesium additions ranging from 5 mg kg-1 to 80 mg kg-1 of soil along with recommended dose of fertilizers. Population of rhizobium, free living nitrogen fixing bacteria, spore count of arbuscular mycorrhizal fungi and per cent root colonization of arbuscular mycorrhizal fungi were studied during flowering. The available magnesium and magnesium uptake were also worked out during harvest. Yield and yield contributing characteristics of cowpea were measured during harvest stage.Result: Magnesium addition produced significant variations in population of rhizobium and free- living nitrogen fixing bacteria whereas spore count of AMF and per cent root colonization of AMF did not vary according to the added doses of magnesium. A higher population of rhizobium, free living nitrogen fixers, root nodules, magnesium uptake, plant height and yield were obtained in the treatment where magnesium was applied @ 10 mg kg-1 soil.


Sign in / Sign up

Export Citation Format

Share Document