Animal models of addiction: models for therapeutic strategies?

2000 ◽  
Vol 107 (6) ◽  
pp. 649-668 ◽  
Author(s):  
J. Wolffgramm ◽  
G. Galli ◽  
A. Heyne ◽  
F. Thimm
2019 ◽  
Vol 115 (13) ◽  
pp. 1838-1849 ◽  
Author(s):  
Christian Riehle ◽  
Johann Bauersachs

Abstract Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way to understanding the underlying mechanisms and development of successful treatments. These models utilize surgical techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate the development of new treatment strategies for patients with HF.


2009 ◽  
Vol 65 ◽  
pp. S21-S22
Author(s):  
Sumantra Chattarji ◽  
Aparna Suvrathan ◽  
Supriya Ghosh ◽  
Rajnish Rao ◽  
Shobha Anilkumar

2020 ◽  
Vol 20 (1_suppl) ◽  
pp. 23S-30S ◽  
Author(s):  
Stephen F. Traynelis ◽  
Dennis Dlugos ◽  
David Henshall ◽  
Heather C. Mefford ◽  
Michael A. Rogawski ◽  
...  

The goals of Epilepsy Benchmark Area III involve identifying areas that are ripe for progress in terms of controlling seizures and patient symptoms in light of the most recent advances in both basic and clinical research. These goals were developed with an emphasis on potential new therapeutic strategies that will reduce seizure burden and improve quality of life for patients with epilepsy. In particular, we continue to support the proposition that a better understanding of how seizures are initiated, propagated, and terminated in different forms of epilepsy is central to enabling new approaches to treatment, including pharmacological as well as surgical and device-oriented approaches. The stubbornly high rate of treatment-resistant epilepsy—one-third of patients—emphasizes the urgent need for new therapeutic strategies, including pharmacological, procedural, device linked, and genetic. The development of new approaches can be advanced by better animal models of seizure initiation that represent salient features of human epilepsy, as well as humanized models such as induced pluripotent stem cells and organoids. The rapid advances in genetic understanding of a subset of epilepsies provide a path to new and direct patient-relevant cellular and animal models, which could catalyze conceptualization of new treatments that may be broadly applicable across multiple forms of epilepsies beyond those arising from variation in a single gene. Remarkable advances in machine learning algorithms and miniaturization of devices and increases in computational power together provide an enhanced opportunity to detect and mitigate seizures in real time via devices that interrupt electrical activity directly or administer effective pharmaceuticals. Each of these potential areas for advance will be discussed in turn.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Hu ◽  
Zhen Ye ◽  
Mingquan Wu ◽  
Yingqi She ◽  
Linzhen Li ◽  
...  

Ulcerative Colitis (UC) is a chronic inflammatory bowel disease. The prolonged course of UC and the lack of effective treatment management make it difficult to cure, affecting the health and life safety of patients. Although UC has received more attention, the etiology and pathogenesis of UC are still unclear. Therefore, it is urgent to establish an updated and comprehensive understanding of UC and explore effective treatment strategies. Notably, sufficient evidence shows that the intestinal microbiota plays an important role in the pathogenesis of UC, and the treating method aimed at improving the balance of the intestinal microbiota exhibits a therapeutic potential for UC. This article reviews the relationship between the genetic, immunological and microbial risk factors with UC. At the same time, the UC animal models related to intestinal microbiota dysbiosis induced by chemical drugs were evaluated. Finally, the potential value of the therapeutic strategies for restoring intestinal microbial homeostasis and treating UC were also investigated. Comprehensively, this study may help to carry out preclinical research, treatment theory and methods, and health management strategy of UC, and provide some theoretical basis for TCM in the treatment of UC.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Philipp Delling ◽  
Tobias M. Boeckers

Abstract Background Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. Main text This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. Conclusions Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3318
Author(s):  
Marina Serra ◽  
Amedeo Columbano ◽  
Andrea Perra ◽  
Marta Anna Kowalik

Hepatocellular carcinoma (HCC) is one the most frequent and lethal human cancers. At present, no effective treatment for advanced HCC exist; therefore, the overall prognosis for HCC patients remains dismal. In recent years, a better knowledge of the signaling pathways involved in the regulation of HCC development and progression, has led to the identification of novel potential targets for therapeutic strategies. However, the obtained benefits from current therapeutic options are disappointing. Altered cancer metabolism has become a topic of renewed interest in the last decades, and it has been included among the core hallmarks of cancer. In the light of growing evidence for metabolic reprogramming in cancer, a wide number of experimental animal models have been exploited to study metabolic changes characterizing HCC development and progression and to further expand our knowledge of this tumor. In the present review, we discuss several rodent models of hepatocarcinogenesis, that contributed to elucidate the metabolic profile of HCC and the implications of these changes in modulating the aggressiveness of neoplastic cells. We also highlight the apparently contrasting results stemming from different animal models. Finally, we analyze whether these observations could be exploited to improve current therapeutic strategies for HCC.


Sign in / Sign up

Export Citation Format

Share Document