scholarly journals The role of potentiating mutations in the evolution of pandemic Escherichia coli clones

Author(s):  
Elizabeth A. Cummins ◽  
Ann E. Snaith ◽  
Alan McNally ◽  
Rebecca J. Hall

AbstractThe Escherichia coli species exhibits a vast array of variable lifestyles, including environmental, commensal, and pathogenic organisms. Many of these E. coli contribute significantly to the global threat of antimicrobial resistance (AMR). Multidrug-resistant (MDR) clones of E. coli have arisen multiple times over varying timescales. The repeated emergence of successful pandemic clones, including the notorious ST131 lineage, highlights a desperate need to further study the evolutionary processes underlying their emergence and success. Here, we review the evolutionary emergence of E. coli ST131 pandemic clones and draw parallels between their evolutionary trajectories and those of other lineages. From colonization and expansion to the acquisition of multidrug resistance plasmids, potentiating mutations are present at each stage, leading to a proposed sequence of events that may result in the formation of an antimicrobial-resistant pandemic clone.

2020 ◽  
Vol 11 ◽  
Author(s):  
Mingyu Wang ◽  
Wenjia Wang ◽  
Yu Niu ◽  
Ting Liu ◽  
Ling Li ◽  
...  

An extensively-drug resistant (XDR) Escherichia coli W60 was isolated from the urine sample of a patient. The genetic basis for its XDR phenotype was investigated, particularly the basis for its resistance toward β-lactam/BLI (β-Lactamase Inhibitor) combinations. Following determination of the XDR phenotype, third generation genomic sequencing was performed to identify genetic structures in E. coli W60. Further cloning analysis was performed to identify determinants of β-lactam/BLI combination resistance. It was found that E. coli W60 is resistant to nearly all of the tested antibiotics including all commonly used β-lactam/BLI combinations. Analysis of the genomic structures in E. coli W60 showed two novel transferable plasmids are responsible for the resistance phenotypes. Further genetic analysis showed blaNDM–5 leads to high resistance to β-lactam/BLI combinations, which was enhanced by co-expressing bleMBL. pECW602 harbors a truncated blaTEM that is not functional due to the loss of the N-terminal signal peptide coding region. Research performed in this work leads to several significant conclusions: the XDR phenotype of E. coli W60 can be attributed to the presence of transferable multidrug resistance plasmids; NDM-5 confers high resistance to β-lactam/BLI combinations; co-expression of bleMBL enhances resistance caused by NDM-5; the signal peptides of TEM type β-lactamases are essential for their secretion and function. Findings of this work show the danger of transferable multidrug resistance plasmids and metallo-β-lactamases, both of which should be given more attention in the analysis and treatment of multidrug resistant pathogens.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Silpak Biswas ◽  
Mohammed Elbediwi ◽  
Guimin Gu ◽  
Min Yue

Colistin is considered to be a ‘last-resort’ antimicrobial for the treatment of multidrug-resistant Gram-negative bacterial infections. Identification of Enterobacteriaceae, carrying the transferable colistin resistance gene mcr-1, has recently provoked a global health concern. This report presents the first detection of a hydrogen sulfide (H2S)-producing Escherichia coli variant isolated from a human in China, with multidrug resistance (MDR) properties, including colistin resistance by the mcr-1 gene, which could have great implications for the treatment of human infections.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kayhan Ilbeigi ◽  
Mahdi Askari Badouei ◽  
Hossein Vaezi ◽  
Hassan Zaheri ◽  
Sina Aghasharif ◽  
...  

Abstract Objectives The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is one of the major public health concerns as colistin is the last-resort antibiotic for treating infections caused by multidrug-resistant Gram-negative bacteria. We aimed to determine the prevalence of the prototype widespread colistin resistance genes (mcr-1 and mcr-2) among commensal and pathogenic Escherichia coli strains isolated from food-producing and companion animals in Iran. Results A total of 607 E. coli isolates which were previously collected from different animal sources between 2008 and 2016 used to uncover the possible presence of plasmid-mediated colistin resistance genes (mcr-1 and mcr-2) by PCR. Overall, our results could not confirm the presence of any mcr-1 or mcr-2 positive E. coli among the studied isolates. It is concluded that despite the important role of food-producing animals in transferring the antibiotic resistance, they were not the main source for carriage of mcr-1 and mcr-2 in Iran until 2016. This study suggests that the other mcr variants (mcr-3 to mcr-9) might be responsible for conferring colistin resistance in animal isolates in Iran. The possible linkage between pig farming industry and high level of mcr carriage in some countries needs to be clarified in future prospective studies.


2021 ◽  
Vol 42 (6supl2) ◽  
pp. 3813-3824
Author(s):  
Rodrigo Pacheco Ornellas ◽  
◽  
Hugo Peralva Lopes ◽  
Daniela de Queiroz Baptista ◽  
Thomas Salles Dias ◽  
...  

Broiler chickens and derived products are a key source of Shiga toxin-producing Escherichia coli (STEC) in humans. This pathotype is responsible for causing severe episodes of diarrhea, which can progress to systemic complications. A rapid and accurate diagnosis of the disease, and early treatment of the infection with antimicrobials, can prevent it worsening. However, multidrug-resistant strains have potentially negative implications for treatment success. In this context, the aim of the present study was to isolate and identify multidrug-resistant STEC strains from broiler chickens and carcasses. Of 171 E. coli strains, isolated by conventional microbiological techniques and submitted to Polymerase Chain Reaction (PCR), for detection of stx1 and stx2 genes, 21.05% (36/171) were STEC pathotype, and most of them (66.67% - 24/36) carried both stx1 and eae genes. The multidrug resistance pattern was observed in 75% (27/36) of STEC strains. The presence of STEC in broiler chickens and carcasses reinforces that these sources may act as reservoirs for this pathotype. Multidrug-resistant bacteria contaminating animal products represent a public health issue because of the possibility of spread of multidrug-resistant determinants in the food chain and a higher risk of failure in human treatment when antimicrobials are needed.


1996 ◽  
Vol 40 (4) ◽  
pp. 1050-1052 ◽  
Author(s):  
O Lomovskaya ◽  
F Kawai ◽  
A Matin

The mcb operon (which is responsible for microcin B17 production) and the emr operon (which encodes a multidrug resistance pump) share a common negative regulator, EmrR. Nevertheless, compounds that induce the emr operon repress the mcb operon. The pump dedicated to microcin B17 extrusion can also protect the calls against sparfloxacin and other toxic compounds.


Sign in / Sign up

Export Citation Format

Share Document