Woodpecker populations in winter in the interior of the European continent are highly dependent on climate change and its consequences

Author(s):  
Arthur O. Askeyev ◽  
Oleg V. Askeyev ◽  
Igor V. Askeyev ◽  
Tim H. Sparks
2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


Author(s):  
Guillaume Rohat ◽  
Stéphane Goyette ◽  
Johannes Flacke

Purpose Climate analogues have been extensively used in ecological studies to assess the shift of ecoregions due to climate change and the associated impacts on species survival and displacement, but they have hardly been applied to urban areas and their climate shift. This paper aims to use climate analogues to characterize the climate shift of cities and to explore its implications as well as potential applications of this approach. Design/methodology/approach The authors propose a methodology to match the current climate of cities with the future climate of other locations and to characterize cities’ climate shift velocity. Employing a sample of 90 European cities, the authors demonstrate the applicability of this method and characterize their climate shift from 1951 to 2100. Findings Results show that cities’ climate shift follows rather strictly north-to-south transects over the European continent and that the average southward velocity is expected to double throughout the twenty-first century. These rapid shifts will have direct implications for urban infrastructure, risk management and public health services. Originality/value These findings appear to be potentially useful for raising awareness of stakeholders and urban dwellers about the pace, magnitude and dynamics of climate change, supporting identification of the future climate impacts and vulnerabilities and implementation of readily available adaptation options, and strengthening cities’ cooperation within climate-related networks.


2021 ◽  
Author(s):  
Mario Al Sayah ◽  
Pierre-Antoine Versini ◽  
Daniel Schertzer

<p>The challenges imposed by climate change and urbanization require a paradigm yet holistic shift that considers the trade-off between ecosystemic conservation, social needs and economic growth. By concomitantly providing socioeconomic and environmental benefits, Nature Based Solutions (NBS) according to the European Commission (EC) present viable, resource-efficient and adaptable tools for ensuring the above-mentioned transition. Accordingly, NBS are high on European and French priority agendas, and are believed to be the way forward. The abundant scientific literature on NBS solidifies their potential through the various advantages they present. Evidently, NBS are win-win resolutions to environmental challenges (climate change, natural risks, food and water security), they support greener economies, conserve biodiversity, promote sustainability, support adaptive capacities, and reduce natural/socioeconomic sensitivities. In spite of their potential, NBS are faced by many obstacles. Conceptual obstacles include contested definitions of NBS, reduced reporting on uncertainties, and overlaps with sister notions that make the NBS concept somewhat vague. Systemic challenges include governance barriers, public willingness to adopt NBS and stakeholder participation (acceptance, perspectives and engagement). Implementation challenges encompass limited funds or budgets, difficulties of upscaling what works and maintaining-monitoring progress. Accounting for the above-mentioned elements, this study will use France as a micro scale and the European continent as a macro scale, to provide a local and regional inventory of NBS’ potential and limits. First, an in-depth bibliographic analysis and text mining techniques are carried out for providing detailed science-based evidence on the performance of NBS. For the national scale, peer-reviewed literature from the Scopus database and official UN bodies or international organizations reports are used. For the European scale, deliverables of several Horizon 2020 projects serve the purpose. Subsequently, an analysis of stakeholder profiles, categories, and participation for mapping NBS actors in both contexts will follow. By combining theoretical investigations and stakeholder analysis, a holistic representation of the NBS framework is ensured. The logic behind this approach is to draw up scientific and technical evidence on NBS to mainstream their integration into development projects. Accordingly, the objective of this research work falls under one of the several actions of the Life ARTISAN project, action A1: reporting on obstacles and levers for Nature Based Adaptation Solutions. Under this scope, the project ARTISAN standing for “Achieving Resiliency by Triggering Implementation of nature-based Solutions for climate Adaptation at a National scale” aims to achieve the plans set in France’s second national climate change adaptation plan by leveraging NBS. Beyond the national scale, by capitalizing on past experiences and grouping dispersed findings, this study will provide deeper insights on NBS, and will allow a prioritization of research and knowledge building needs.</p>


2021 ◽  
Author(s):  
Niels Debonne

<p>Rural regions in Europe are expected to deliver a range of contributions to the Sustainable Development Goals. However, these regions are under pressure by megatrends which shape their limitations and possibilities to contribute to sustainability now and in the future. Climate change demography, and value chain dynamics are three particularly interesting megatrends, because while they are global in scope, they have distinctly heterogeneous spatial signatures. The specific patterns and manifestations of climate and environmental change, demographic dynamics, and value chain constellations at the regional scale signal the expected agricultural change in that region, as well as the possibilities the region has to offer. Therefore, studying these megatrends can provide foresight into how European agriculture is likely to evolve. Farm upscaling can for example be expected in ageing regions which are well-embedded in global value chains and for which climate change impacts are either largely positive are not overly challenging to overcome. Other combinations of megatrends may lead to land abandonment, Californization (the use of migrant labor), or the development of sustainable markets. This research quantifies and maps megatrends, and identifies hotspots of megatrend interference. It discusses the implications of various combinations of megatrends, as they emerge across the European continent.</p>


2021 ◽  
Vol 13 (12) ◽  
pp. 6700
Author(s):  
Youngseok Hwang ◽  
Stephan Schlüter ◽  
Tanupriya Choudhury ◽  
Jung-Sup Um

Submitting national inventory reports (NIRs) on emissions of greenhouse gases (GHGs) is obligatory for parties of the United Nations Framework Convention on Climate Change (UNFCCC). The NIR forms the basis for monitoring individual countries’ progress on mitigating climate change. Countries prepare NIRs using the default bottom–up methodology of the Intergovernmental Panel on Climate Change (IPCC), as approved by the Kyoto protocol. We provide tangible evidence of the discrepancy between official bottom–up NIR reporting (unit: tons) versus top–down XCO2 reporting (unit: ppm) within the European continent, as measured by the Greenhouse Gases Observing Satellite (GOSAT). Bottom–up NIR (annual growth rate of CO2 emission from 2010 to 2016: −1.55%) does not show meaningful correlation (geographically weighted regression coefficient = −0.001, R2 = 0.024) to top–down GOSAT XCO2 (annual growth rate: 0.59%) in the European countries. The top five countries within the European continent on carbon emissions in NIR do not match the top five countries on GOSAT XCO2 concentrations. NIR exhibits anthropogenic carbon-generating activity within country boundaries, whereas satellite signals reveal the trans-boundary movement of natural and anthropogenic carbon. Although bottom–up NIR reporting has already gained worldwide recognition as a method to track national follow-up for treaty obligations, the single approach based on bottom–up did not present background atmospheric CO2 density derived from the air mass movement between the countries. In conclusion, we suggest an integrated measuring, reporting, and verification (MRV) approach using top–down observation in combination with bottom–up NIR that can provide sufficient countrywide objective evidence for national follow-up activities.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1331 ◽  
Author(s):  
Aristeidis Koutroulis ◽  
Lamprini Papadimitriou ◽  
Manolis Grillakis ◽  
Ioannis Tsanis ◽  
Klaus Wyser ◽  
...  

The simulation of hydrological impacts in a changing climate remains one of the main challenges of the earth system sciences. Impact assessments can be, in many cases, laborious processes leading to inevitable methodological compromises that drastically affect the robustness of the conclusions. In this study we examine the implications of different CMIP5-based regional and global climate model ensembles for projections of the hydrological impacts of climate change. We compare results from three different assessments of hydrological impacts under high-end climate change (RCP8.5) across Europe, and we focus on how methodological differences affect the projections. We assess, as systematically as possible, the differences in runoff projections as simulated by a land surface model driven by three different sets of climate projections over the European continent at global warming of 1.5 °C, 2 °C and 4 °C relative to pre-industrial levels, according to the RCP8.5 concentration scenario. We find that these methodological differences lead to considerably different outputs for a number of indicators used to express different aspects of runoff. We further use a number of new global climate model experiments, with an emphasis on high resolution, to test the assumption that many of the uncertainties in regional climate and hydrological changes are driven predominantly by the prescribed sea surface temperatures (SSTs) and sea-ice concentrations (SICs) and we find that results are more sensitive to the choice of the atmosphere model compared to the driving SSTs. Finally, we combine all sources of information to identify robust patterns of hydrological changes across the European continent.


2021 ◽  
Vol 10 (4) ◽  
pp. 138
Author(s):  
Liudmyla Golovko ◽  
Olena Yara ◽  
Olena Uliutina ◽  
Andrii Tereshchenko ◽  
Andrew Kudin

It is an indisputable fact that one of the most important problems today is global climate change. Climate change affects everyone and requires a concerted effort at regional, national and international levels. The most intensive legal regulation of environmental protection, including climate change, which has an extremely negative impact on the environment, is carried out on the European continent. The European Union is a leader in climate change prevention and an example for other countries. The state policy of Ukraine on legislative adaptation is formed as an integral part of legal reform in Ukraine and is aimed at ensuring common approaches to rule-making, mandatory consideration of European Union legislation in rule-making, training of qualified specialists, creating appropriate conditions for institutional, scientific, educational, technical, financial support of the process of adaptation of the legislation of Ukraine. In the scholarly work global and European trends in climate change prevention policy were revealed. The adaptation of Ukrainian legislation in the field of climate change to EU law was analyzed. The conceptual foundations of the environmental policy of Ukraine in the context of climate change were considered. The challenges and problems on the way to the implementation of climate policy were determined.


2006 ◽  
Vol 2 (6) ◽  
pp. 1155-1186 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of a set of 25 climate models run for the mid-Holocene period (6 ka BP) with a set of palaeo-climate reconstructions from over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were then grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) the same directions of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The initial comparison showed that the models were only capable of reproducing regions of little climate change, as the data-based reconstructions have a much larger range of changes due to their local nature. A correction for the model standard deviation was then applied to allow the comparison to proceed, and this second test shows that the majority of models simulate all the observed patterns of climatic change, although most do not simulate the observed magnitude of change. The models were then compared by distance to data, and by the amount of correction required. The majority of the models are grouped together both in distance and correction, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, whilst the models are unable to reproduce the exact patterns of change, they all produce the correct direction of change for the mid-Holocene.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


Sign in / Sign up

Export Citation Format

Share Document