scholarly journals Brain oscillation recordings of the audience in a live concert-like setting

Author(s):  
Mari Tervaniemi ◽  
Saara Pousi ◽  
Maaria Seppälä ◽  
Makkonen Tommi

AbstractThere are only a few previous EEG studies that were conducted while the audience is listening to live music. However, in laboratory settings using music recordings, EEG frequency bands theta and alpha are connected to music improvisation and creativity. Here, we measured EEG of the audience in a concert-like setting outside the laboratory and compared the theta and alpha power evoked by partly improvised versus regularly performed familiar versus unfamiliar live classical music. To this end, partly improvised and regular versions of pieces by Bach (familiar) and Melartin (unfamiliar) were performed live by a chamber trio. EEG data from left and right frontal and central regions of interest were analysed to define theta and alpha power during each performance. After the performances, the participants rated how improvised and attractive each of the performances were. They also gave their affective ratings before and after each performance. We found that theta power was enhanced during the familiar improvised Bach piece and the unfamiliar improvised Melartin piece when compared with the performance of the same piece performed in a regular manner. Alpha power was not modulated by manner of performance or by familiarity of the piece. Listeners rated partly improvised performances of a familiar Bach and unfamiliar Melartin piece as more improvisatory and innovative than the regular performances. They also indicated more joy and less sadness after listening to the unfamiliar improvised piece of Melartin and less fearful and more enthusiastic after listening to the regular version of Melartin than before listening. Thus, according to our results, it is possible to study listeners’ brain functions with EEG during live music performances outside the laboratory, with theta activity reflecting the presence of improvisation in the performances.

2015 ◽  
Vol 12 (2) ◽  
pp. 77
Author(s):  
Haryanti Norhazman ◽  
Norliza Mohamad Zaini ◽  
Mohd Nasir Taib ◽  
Kama Azura Othman ◽  
Rozita Jailani ◽  
...  

Healthy brain is important in making sure that our lives are run properly. In most cases, normal and emotionally stable persons can think wisely and most of the time they are able to execute proper strategy in any problem solving. Listening to the Binaural Beats tone is one of the methods to distress. The effects of the Binaural Beats tone on male and female were observed on Alpha and Beta sub bands in both hemispheres. 40 subjects were involved in EEG data collection of sessions before and after listening to the binaural beats. The frequency of the beats used in this research is Alpha frequency of 9 Hz. The Energy Spectral Density feature (ESD) for both left and right hemispheres were used. Graphical analysis observing the box plot from the Normality Test shows that in session before, females have higher alpha level in both hemispheres as compared to males. Females have lower beta level in both hemispheres as compared to males. In session after listening to the binaural beats, both males and females have better decrement in beta levels in both hemispheres. Decrement in Beta sub bands also indicates that the subjects are getting more relaxed. The results indicate that male’s brain is easier to be entrained. During listening to noise, female group shows that they are easily affected by noise as compared to males. Keywords: Binaural Beats, EEG, ESD, female and male


Author(s):  
Sean Tanabe ◽  
Maggie Parker ◽  
Richard Lennertz ◽  
Robert A Pearce ◽  
Matthew I Banks ◽  
...  

Abstract Delirium is associated with electroencephalogram (EEG) slowing and impairments in connectivity. We hypothesized that delirium would be accompanied by a reduction in the available cortical information (i.e. there is less information processing occurring), as measured by a surrogate, Lempil-Ziv Complexity (LZC), a measure of time-domain complexity. Two ongoing perioperative cohort studies (NCT03124303, NCT02926417) contributed EEG data from 91 patients before and after surgery; 89 participants were used in the analyses. After cleaning and filtering (0.1-50Hz), the perioperative change in LZC and LZC normalized (LZCn) to a phase-shuffled distribution were calculated. The primary outcome was the correlation of within-patient paired changes in delirium severity (Delirium Rating Scale-98 [DRS]) and LZC. Scalp-wide threshold free cluster enhancement was employed for multiple comparison correction. LZC negatively correlated with DRS in a scalp-wide manner (peak channel r 2=0.199, p<0.001). This whole brain effect remained for LZCn, though the correlations were weaker (peak channel r 2=0.076, p=0.010). Delirium diagnosis was similarly associated with decreases in LZC (peak channel p<0.001). For LZCn, the topological significance was constrained to the midline posterior regions (peak channel p=0.006). We found a negative correlation of LZC in the posterior and temporal regions with monocyte chemoattractant protein-1 (peak channel r 2=0.264, p<0.001, n=47) but not for LZCn. Complexity of the EEG signal fades proportionately to delirium severity implying reduced cortical information. Peripheral inflammation, as assessed by monocyte chemoattractant protein-1, does not entirely account for this effect, suggesting that additional pathogenic mechanisms are involved.


2008 ◽  
Vol 19 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Priscila de Oliveira Serrano ◽  
Fernanda Faot ◽  
Altair Antoninha Del Bel Cury ◽  
Renata Cunha Matheus Rodrigues Garcia

This study described changes in mandibular movements during pronunciation of /m/ and /s/ sounds in Portuguese, in patients presenting dental wear before and after appliance insertion and tooth reconstruction. Subjects were divided into a control group of dentate patients and an experimental group of patients with incisal tooth wear due to bruxism. A magnetic jaw tracking device measured the jaw opening, and translations to left and right sides of the mandible during pronunciation of phonemes. Evaluations were carried out 1 week and immediately before appliance insertion; 24 h, 7, 30 and 60 days after appliance insertion; and 1 week and 1 month after tooth reconstruction. Data were submitted to two-way ANOVA, Mann-Whitney and Friedman tests (p<0.05). Jaw opening was different (p<0.05) for both sounds in all periods. The anteroposterior amplitude for /s/ showed differences immediately before and 1 month after appliance insertion (p<0.05). Lateral amplitude for the right side showed differences between groups after appliance insertion for /s/, and 1 and 2 months after appliance insertion for the /m/ (p<0.05). Volunteers with anterior tooth wear had a wider opening movement, and the movements during speech of /m/ and /s/ sounds were not changed after appliance insertion and reconstruction of teeth.


2014 ◽  
Vol 6 (2) ◽  
pp. 29-34
Author(s):  
Nirmala Limbu ◽  
Ramanjan Sinha ◽  
Meenakshi Sinha ◽  
Bishnu Hari Paudel

Objective: We aimed to investigate how EEG frequency bands change in females in response to acute exercise compared to males.Methods: Consenting healthy adult females (n=15) & males (n=15) bicycled an ergometer at 50% HRmax for 20 min. EEG was recorded using 10-20 system from mid-frontal (F4 & F3), central (C4 & C3), parietal (P4 & P3), temporal (T4 & T3) & occipital (O2 & O1) regions. Exercise-induced EEG changes were compared between two sexes by Mann Whitney test. EEG power (μV2) is presented as median & interquartile range.Results: In females, as compared to males, resting right side delta, alpha, and beta activities were more in almost all recorded sites [delta: F4= 49.82 (44.23-63.56) vs. 35.5 (32.70-44.44), p < 0.001; etc], [alpha F4: 127.62 (112.89-149.03) vs. 49.36 (46.37-52.98), p < 0.001; etc], [beta F4= 18.96 (15.83-25.38)  vs. 14.77 (10.34-17.55), p < 0.05; C4= 21.16 (18.4-25.9) vs. 15.48 (9.66-19.40), p < 0.01; etc]. Similarly, females resting right theta activity was more in parietal [P4= 33.04 (25.1-42.41) vs. 22.3 (18.36-34.33), p < 0.05] & occipital [O2= 50.81 (30.64-66.8) vs. 26.85 (22.18-34.42), p < 0.001] regions than in males. They had similar picture on the left side also. The delta values of right alpha power was less in female in frontal [F4= -11.61 (-45.24 -3.64) vs. 9.48 (1.05-16.58), p < 0.01] and central [C4= -72 (-32.98-9.48) vs. 22.69 (13.03-33.05), p < 0.01] regions compared to males. Also, they had less delta values of left central alpha [C3= -8.32 (-32.65-6.1) vs. 16.5 (0.36-36.36), p < 0.01] and temporal beta [T3= -6.29 (-10.09- -1.49) vs. 1.24 (-0.84- 2.8), p < 0.001] power compared to males.Conclusion: At rest females may have high EEG powers in different bands. In response to acute exercise, they respond in reverse way as compared to males.DOI: http://dx.doi.org/10.3126/ajms.v6i2.11116Asian Journal of Medical Sciences Vol.6(2) 2015 30-35


2019 ◽  
Author(s):  
Johannes Vosskuhl ◽  
Tuomas P. Mutanen ◽  
Toralf Neuling ◽  
Risto J. Ilmoniemi ◽  
Christoph S. Herrmann

1.AbstractBackgroundTo probe the functional role of brain oscillations, transcranial alternating current stimulation (tACS) has proven to be a useful neuroscientific tool. Because of the huge tACS-caused artifact in electroencephalography (EEG) signals, tACS–EEG studies have been mostly limited to compare brain activity between recordings before and after concurrent tACS. Critically, attempts to suppress the artifact in the data cannot assure that the entire artifact is removed while brain activity is preserved. The current study aims to evaluate the feasibility of specific artifact correction techniques to clean tACS-contaminated EEG data.New MethodIn the first experiment, we used a phantom head to have full control over the signal to be analyzed. Driving pre-recorded human brain-oscillation signals through a dipolar current source within the phantom, we simultaneously applied tACS and compared the performance of different artifact-correction techniques: sine subtraction, template subtraction, and signal-space projection (SSP). In the second experiment, we combined tACS and EEG on a human subject to validate the best-performing data-correction approach.ResultsThe tACS artifact was highly attenuated by SSP in the phantom and the human EEG; thus, we were able to recover the amplitude and phase of the oscillatory activity. In the human experiment, event-related desynchronization could be restored after correcting the artifact.Comparison with existing methodsThe best results were achieved with SSP, which outperformed sine subtraction and template subtraction.ConclusionsOur results demonstrate the feasibility of SSP by applying it to human tACS–EEG data.


2020 ◽  
Author(s):  
Aleksandra Kołodziej ◽  
Mikołaj Magnuski ◽  
Anastasia Ruban ◽  
Aneta Brzezicka

AbstractFor decades, the frontal alpha asymmetry (FAA) - a disproportion in EEG alpha oscillations power between right and left frontal channels - has been one of the most popular measures of depressive disorders (DD) in electrophysiology studies. Patients with DD often manifest a left-sided FAA: relatively higher alpha power in the left versus right frontal lobe. Recently, however, multiple studies failed to confirm this effect, questioning its reproducibility. Our purpose is to thoroughly test the validity of FAA in depression by conducting a multiverse analysis - running many related analyses and testing the sensitivity of the effect to changes in the analytical approach - on data from three independent studies. Only two of the 81 analyses revealed significant results. We conclude the paper by discussing theoretical assumptions underlying the FAA and suggest a list of guidelines for improving and expanding the EEG data analysis in future FAA studies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noriko Sakurai ◽  
Ken Ohno ◽  
Satoshi Kasai ◽  
Kazuaki Nagasaka ◽  
Hideaki Onishi ◽  
...  

Background: Autonomous sensory meridian response (ASMR) is used by young people to induce relaxation and sleep and to reduce stress and anxiety; it comprises somatosensation caused by audiovisual stimuli (triggers) that lead to positive emotions. Auditory stimuli play the most important role among the triggers involved in ASMR and have been reported to be more triggering than visual stimuli. On the other hand, classical music is also known to have a relaxing effect. This is the first study to clarify the difference in brain activation associated with relaxation effects between ASMR and classical music by limiting ASMR to auditory stimulation alone.Methods: Thirty healthy subjects, all over 20 years of age, underwent fMRI while listening to ASMR and classical music. We compared the differences in brain activation associated with classical music and ASMR stimulation. After the experiment, the subjects were administered a questionnaire on somatosensation and moods. After the experiment, the participants were asked whether they experienced ASMR somatosensation or frisson. They were also asked to rate the intensity of two moods during stimulation: “comfortable mood,” and “tingling mood”.Result: The results of the questionnaire showed that none of the participants experienced any ASMR somatosensation or frisson. Further, there was no significant difference in the ratings given to comfort mood, but there was a significant difference in those given to tingling mood. In terms of brain function, classical music and ASMR showed significant activation in common areas, while ASMR showed activation in more areas, with the medial prefrontal cortex being the main area of activation during ASMR.Conclusion: Both classical music and the ASMR auditory stimulus produced a pleasant and relaxed state, and ASMR involved more complex brain functions than classical music, especially the activation of the medial prefrontal cortex. Although ASMR was limited to auditory stimulation, the effects were similar to those of listening to classical music, suggesting that ASMR stimulation can produce a pleasant state of relaxation even if it is limited to the auditory component, without the somatic sensation of tingling. ASMR stimulation is easy to use, and appropriate for wellness purposes and a wide range of people.


1997 ◽  
Vol 78 (5) ◽  
pp. 2655-2661 ◽  
Author(s):  
Adi Mizrahi ◽  
Frederic Libersat

Mizrahi, Adi and Frederic Libersat. Independent coding of wind direction in cockroach giant interneurons. J. Neurophysiol. 78: 2655–2661, 1997. In this study we examined the possible role of cell-to-cell interactions in the localization processing of a wind stimulus by the cockroach cercal system. Such sensory processing is performed primarily by pairs of giant interneurons (GIs), a group of highly directional cells. We have studied possible interactions among these GIs by comparing the wind sensitivity of a given GI before and after removing another GI with the use of photoablation. Testing various combinations of GI pairs did not reveal any suprathreshold interactions. This was true for all unilateral GI pairs on the left or right side as well as all the bilateral GI pairs (left and right homologues). Those experiments in which we were able to measure synaptic activity did not reveal subthreshold interactions between the GIs either. We conclude that the GIs code independently for a given wind direction without local GI–GI interactions. We discuss the possible implications of the absence of local interactions on information transfer in the first station of the escape circuit.


Sign in / Sign up

Export Citation Format

Share Document