Cost-effective and rapid prototyping of PMMA microfluidic device via polymer-assisted bonding

2021 ◽  
Vol 25 (8) ◽  
Author(s):  
Alper Baran Sözmen ◽  
Ahu Arslan Yildiz
Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 487
Author(s):  
Hongyan Xu ◽  
Zhangying Wu ◽  
Jinan Deng ◽  
Jun Qiu ◽  
Ning Hu ◽  
...  

The development of a simple, portable, and cost-effective plasma separation platform for blood biochemical analysis is of great interest in clinical diagnostics. We represent a plasma separation microfluidic device using microspheres with different sizes as the separation barrier. This plasma separation device, with 18 capillary microchannels, can extract about 3 μL of plasma from a 50 μL blood sample in about 55 min. The effects of evaporation and the microsphere barrier on the plasma biochemical analysis results were studied. Correction factors were applied to compensate for these two effects. The feasibility of the device in plasma biochemical analysis was validated with clinical blood samples.


2016 ◽  
Vol 20 (12) ◽  
Author(s):  
Antonio Liga ◽  
Jonathan A. S. Morton ◽  
Maïwenn Kersaudy-Kerhoas

2008 ◽  
Vol 5 (3) ◽  
pp. 116-121 ◽  
Author(s):  
Aaron D. Halvorsen ◽  
Pooja Vaidya ◽  
Matthew Robinson ◽  
Douglas L. Schulz

A conventional laser micromachining system is configured for use as a matrix-assisted pulsed laser evaporation direct-write (MAPLE-DW) system in a straightforward and cost-effective manner. The simplicity of the method is illustrated by highlighting the process for MAPLE-DW of polymer composites used in chemical gas sensor arrays. Important aspects are considered, including ribbon preparation, ribbon aging, and computerized process control for rapid prototyping.


2007 ◽  
Vol 53 (7) ◽  
pp. 1323-1329 ◽  
Author(s):  
Dianping Tang ◽  
Ruo Yuan ◽  
Yaqin Chai

Abstract Background: Methods based on magnetic bead probes have been developed for immunoassay, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Methods: We synthesized magnet core/shell NiFe2O4/SiO2 nanoparticles and fabricated an electrochemical magnetic controlled microfluidic device for the detection of 4 tumor markers. The immunoassay system consisted of 5 working electrodes and an Ag/AgCl reference electrode integrated on a glass substrate. Each working electrode contained a different antibody immobilized on the NiFe2O4/SiO2 nanoparticle surface and was capable of measuring a specific tumor marker using noncompetitive electrochemical immunoassay. Results: Under optimal conditions, the multiplex immunoassay enabled the simultaneous detection of 4 tumor markers. The sensor detection limit was <0.5 μg/L (or <0.5 kunits/L) for most analytes. Intra- and interassay imprecisions (CVs) were <4.5% and 8.7% for analyte concentrations >5 μg/L (or >5 kunits/L), respectively. No nonspecific adsorption was observed during a series of procedures to detect target proteins, and electrochemical cross-talk (CV) between neighboring sites was <10%. Conclusion: This immunoassay system offers promise for label-free, rapid, simple, cost-effective analysis of biological samples. Importantly, the chip-based immunosensor could be suitable for use in the mass production of miniaturized lab-on-a-chip devices and open new opportunities for protein diagnostics and biosecurity.


2016 ◽  
Vol 879 ◽  
pp. 1721-1724
Author(s):  
Sylvio Schneider ◽  
Harald Beyer ◽  
Karsten Lange ◽  
Werner Bohmeyer ◽  
Mauro Casalboni ◽  
...  

This work presents a photolithographic rapid prototyping process for producing thin films ("Rapid Phototyping"). This process allows a quick and cost-effective generation of scalable thermopile microstructures using commercial equipment and materials. Structural widths of 100x250μm can be produced reproducible in a lift-off process with an accuracy of 5 microns vertically and 30 microns horizontally.


Author(s):  
Hsiu-hung Chen ◽  
Dayong Gao

The manipulation of particles and cells in micro-fluids, such as cell suspensions, is a fundamental task in Lab-on-a-Chip applications. According to their analysis purposes in either the pre- or post-processing stage, particles/cells flowing inside a microfluidic channel are handled by means of enriching, trapping, separating or sorting. In this study, we report the use of patterning flows produced by a series of grooved surfaces with different geometrical setups integrated into a microfluidic device, to continuously manipulate the flowing particles (5 to 20 μm in diameters) of comparable sizes to the depth of the channel in ways of: 1) concentrating, 2) focusing, and 3) potential separating. The device is fabricated using soft lithographic techniques and is composed of inlets, microfluidic channels, and outlets for loading, manipulating and retrieving cell suspensions, respectively. Such fabrication methods allow rapid prototyping of micron or submicron structures with multiple layers and replica molding on those fabricated features in a clear polymer. The particles are evenly distributed in the entrance of the microchannel and illustrate the enriching, focusing, or size-selective profiles after passing through the patterning grooves. We expect that the techniques of manipulating cell suspensions from this study can facilitate the development of cell-based devices on 1) the visualization of counting, 2) the visualization of sizing, and 3) the particle separating.


2021 ◽  
Author(s):  
Samantha Richardson ◽  
Alexander Iles ◽  
Jeanette M. Rotchell ◽  
Tim Charlson ◽  
Annabel Hanson ◽  
...  

We demonstrate how a combination of paper microfluidic devices and handheld mobile technology can be used by citizen scientists to carry out a sustained water monitoring campaign. We have developed a paper-based analysis device and a 3 minute sampling workflow that requires no more than a container, a test device and a smartphone app. The contaminant measured in these pilots are phosphates, detectable down to 3 mg L<sup>-1</sup>. Together these allow volunteers to successfully carry out cost-effective, high frequency, phosphate monitoring over an extended geographies and periods.


2020 ◽  
Vol 10 (12) ◽  
pp. 4392 ◽  
Author(s):  
Goran M. Stojanović ◽  
Maja M. Radetić ◽  
Zoran V. Šaponjić ◽  
Marija B. Radoičić ◽  
Milan R. Radovanović ◽  
...  

This work presents a new multilayered microfluidic platform, manufactured using a rapid and cost-effective xurography technique, for the detection of drug concentrations in sweat. Textile fabrics made of cotton and polyester were used as a component of the platform, and they were positioned in the middle of the microfluidic device. In order to obtain a highly conductive textile, the fabrics were in situ coated with different amounts of polyaniline and titanium dioxide nanocomposite. This portable microfluidic platform comprises at least three layers of optically transparent and flexible PVC foils which were stacked one on top of the other. Electrical contacts were provided from the edge of the textile material when a microfluidic variable resistor was actually created. The platform was tested in plain artificial sweat and in artificial sweat with a dissolved cytostatic test drug, cyclophosphamide, of different concentrations. The proposed microfluidic device decreased in resistance when the sweat was applied. In addition, it could successfully detect different concentrations of cytostatic medication in the sweat, which could make it a very useful tool for simple, reliable, and fast diagnostics.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Qinyu Li ◽  
Kai Niu ◽  
Ding Wang ◽  
Lian Xuan ◽  
Xiaolin Wang

Reconstruction of 3D vascularized microtissue within microfabricated devices has rapidly developed in biomedical engineering, which can better mimic tissue microphysiological function and accurately model human diseases in vitro. However, the...


Sign in / Sign up

Export Citation Format

Share Document