scholarly journals An ultra-low power energy-efficient microsystem for hydrogen gas sensing applications

2013 ◽  
Vol 77 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Naser Khosro Pour ◽  
François Krummenacher ◽  
Maher Kayal
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 223 ◽  
Author(s):  
Yannan Zhang ◽  
Ke Han ◽  
and Jiawei Li

Ultra-low power and high-performance logical devices have been the driving force for the continued scaling of complementary metal oxide semiconductor field effect transistors which greatly enable electronic devices such as smart phones to be energy-efficient and portable. In the pursuit of smaller and faster devices, researchers and scientists have worked out a number of ways to further lower the leaking current of MOSFETs (Metal oxide semiconductor field effect transistor). Nanowire structure is now regarded as a promising candidate of future generation of logical devices due to its ultra-low off-state leaking current compares to FinFET. However, the potential of nanowire in terms of off-state current has not been fully discovered. In this article, a novel Core–Insulator Gate-All-Around (CIGAA) nanowire has been proposed, investigated, and simulated comprehensively and systematically based on 3D numerical simulation. Comparisons are carried out between GAA and CIGAA. The new CIGAA structure exhibits low off-state current compares to that of GAA, making it a suitable candidate of future low-power and energy-efficient devices.


Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 183-192
Author(s):  
Muhammad Yasir Faheem ◽  
Shun'an Zhong ◽  
Xinghua Wang ◽  
Muhammad Basit Azeem

Purpose Successive approximation register (SAR) analogue to digital converter (ADC) is well-known with regard to low-power operations. To make it energy-efficient and time-efficient, scientists are working for the last two decades, and it still needs the attention of the researchers. In actual work, there is no mechanism and circuitry for the production of two simultaneous comparator outputs in SAR ADC. Design/methodology/approach A small-sized, low-power and energy-efficient circuitry of a dual comparator and an amplifier is presented, which is the most important part of SAR ADC. The main idea is to design a multi-dimensional circuit which can deliver two quick parallel comparisons. The circuitry of the three devices is combined and miniaturized by introducing a lower number of MOSFET’s and small-sized capacitors in such a way that there is no need for any matching and calibration. Findings The supply voltage of the proposed comparator is 0.7 V with the overall power consumption of 0.257mW. The input and clock frequencies are 5 and 50 MHz, respectively. There is no requirement for any offset calibration and mismatching concerns due to sharing and centralization of spider-latch circuitry. The total offset voltages are 0.13 0.31 mV with 0.3VDD to VDD. All the components are small-sized and miniaturized to make the circuit cost-effective and energy-efficient. The rise and response time of comparator is around 100 ns. SNDR improved from 56 to 65 dB where the input-referred noise of an amplifier is 98mVrms. Originality/value The proposed design has no linear-complexity compared with the conventional comparator in both modes (working and standby); it is ultimately intended and designed for 11-bit SAR ADC. The circuit based on three rapid clock pulses for three different modes includes amplification and two parallel comparisons controlled and switched by a latch named as “spider-latch”.


Sign in / Sign up

Export Citation Format

Share Document