Power law inflation with a non-minimally coupled scalar field in light of Planck 2015 data: the exact versus slow roll results

2015 ◽  
Vol 358 (2) ◽  
Author(s):  
Sergio del Campo ◽  
Carlos Gonzalez ◽  
Ramón Herrera
Keyword(s):  
Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 199
Author(s):  
Igor Fomin ◽  
Sergey Chervon

We investigate the ability of the exponential power-law inflation to be a phenomenologically correct model of the early universe. We study General Relativity (GR) scalar cosmology equations in Ivanov–Salopek–Bond (or Hamilton–Jacobi like) representation where the Hubble parameter H is the function of a scalar field ϕ. Such approach admits calculation of the potential for given H(ϕ) and consequently reconstruction of f(R) gravity in parametric form. By this manner the Starobinsky potential and non-minimal Higgs potential (and consequently the corresponding f(R) gravity) were reconstructed using constraints on the model’s parameters. We also consider methods for generalising the obtained solutions to the case of chiral cosmological models and scalar-tensor gravity. Models based on the quadratic relationship between the Hubble parameter and the function of the non-minimal interaction of the scalar field and curvature are also considered. Comparison to observation (PLANCK 2018) data shows that all models under consideration give correct values for the scalar spectral index and tensor-to-scalar ratio under a wide range of exponential-power-law model’s parameters.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kh. Saaidi ◽  
A. Mohammadi ◽  
T. Golanbari

Slow-roll inflationary scenario is considered in noncanonical scalar field model supposing a power-law function for kinetic term and using two formalisms. In the first approach, the potential is picked out as a power-law function, that is, the most common approach in studying inflation. Hamilton-Jacobi approach is selected as the second formalism, so that the Hubble parameter is introduced as a function of scalar field instead of the potential. Employing the last observational data, the free parameters of the model are constrained, and the predicted form of the potential and attractor behavior of the model are studied in detail.


2017 ◽  
Vol 95 (11) ◽  
pp. 1074-1085 ◽  
Author(s):  
M. Zubair ◽  
Farzana Kousar

We examine inflation in [Formula: see text] theory, where a scalar field is coupled to gravity. We have constructed [Formula: see text] models using exponential and power law potentials and study inflation for these models, which can support the early-time acceleration with a useful cosmological constant at high curvature. We have calculated the slow-roll parameters, scalar-to-tensor ratio, and spectral index for these models and analyzed them graphically to check the viability according to recent observational data. We have also presented the evolution of effective equation of state and energy density.


2017 ◽  
Vol 26 (08) ◽  
pp. 1750079 ◽  
Author(s):  
Basem Ghayour

The potential [Formula: see text] is responsible for the inflation of the universe as scalar field [Formula: see text] oscillates quickly around some point where [Formula: see text] has a minimum. The end of this stage has an important role on the further evolution stages of the universe. The created particles are responsible for reheating the universe at the end of this stage. The behavior of the inflation and reheating stages are often known as power law expansion [Formula: see text], [Formula: see text], respectively. The reheating temperature ([Formula: see text]) and [Formula: see text] give us valuable information about the reheating stage. Recently, people have studied about the behavior of [Formula: see text] based on slow-roll inflation and initial condition of quantum normalization. It is shown that there is some discrepancy on [Formula: see text] due to the amount of [Formula: see text] under the condition of slow-roll inflation and quantum normalization [M. Tong, Class. Quantum Grav. 30 (2013) 055013.]. Therefore, the author is believed in [M. Tong, Class. Quantum Grav. 30 (2013) 055013.] that the quantum normalization may not be a good initial condition but it seems that, we can remove this discrepancy by determining the appropriate parameter [Formula: see text] and hence the obtained temperatures based on the calculated [Formula: see text] are in favor of both mentioned conditions. Then from given [Formula: see text], we can calculate [Formula: see text], tensor-to-scalar ratio [Formula: see text] and parameters [Formula: see text] based on the Planck and WMAP-9 data. The observed results of [Formula: see text] and [Formula: see text] have consistency with their constrains. Also the results of [Formula: see text] are in agreement with its general range and special range based on the DECIGO and BBO detectors.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jens O. Andersen ◽  
Magdalena Eriksson ◽  
Anders Tranberg

Abstract Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified with the expectation value of a quantum field, evolving in a quantum effective potential. The shape of this potential is determined by the underlying tree-level potential, dressed by quantum corrections from the scalar field itself and the metric perturbations. Following [1], we compute the effective scalar field equations and the corrected Friedmann equations to quadratic order in both scalar field, scalar metric and tensor perturbations. We identify the quantum corrections from different sources at leading order in slow-roll, and estimate their magnitude in benchmark models of inflation. We comment on the implications of non-minimal coupling to gravity in this context.


2019 ◽  
Vol 28 (01) ◽  
pp. 1950022 ◽  
Author(s):  
Yousef Bisabr

We consider a generalized Brans–Dicke model in which the scalar field has a self-interacting potential function. The scalar field is also allowed to couple nonminimally with the matter part. We assume that it has a chameleon behavior in the sense that it acquires a density-dependent effective mass. We consider two different types of matter systems which couple with the chameleon, dust and vacuum. In the first case, we find a set of exact solutions when the potential has an exponential form. In the second case, we find a power-law exact solution for the scale factor. In this case, we will show that the vacuum density decays during expansion due to coupling with the chameleon.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012054
Author(s):  
O V Razina ◽  
P Yu Tsyba ◽  
N T Suikimbayeva

Abstract In this work, it is shown that the equations of motion of the scalar field for spatially flat, homogeneous, and isotropic space-time Friedmann-Robertson-Walker have a form-invariance symmetry, which is arising from the form invariance transformation. Form invariance transformation is defined by linear function ρ = n 2 ρ in general case. It is shown the method of getting potential and the scalar field for the power law scale factor. The initial model is always stable at exponent of the scale factor α > 1, but stability of the transformation model depends on index n. Slow roll parameters and spectral induces is obtained and at large α they agree with Planck observation data.


2018 ◽  
Vol 15 (12) ◽  
pp. 1850209
Author(s):  
Joseph Ntahompagaze ◽  
Jean Damascène Mbarubucyeye ◽  
Shambel Sahlu ◽  
Amare Abebe

In this paper, we explore the equivalence between two theories, namely [Formula: see text] and scalar–tensor theories of gravity. We use this equivalence to explore several [Formula: see text] toy models focusing on the inflation epoch of the early universe. The study is done based on the definition of the scalar field in terms of the first derivative of [Formula: see text] model. We have applied the slow-roll approximations during inflationary parameters consideration. The comparison of the numerically computed inflationary parameters with the observations is done. We have inspected that some of the [Formula: see text] models produce numerical values of [Formula: see text] that are in the same range as the suggested values from observations. But for the case of the tensor-to-scalar ratio [Formula: see text], we realized that some of the considered [Formula: see text] models suffer to produce a value which is in agreement with the observed values for different considered space parameter.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850115 ◽  
Author(s):  
M. Zubair ◽  
Farzana Kousar ◽  
Saira Waheed

In this paper, we will discuss cosmological models using Bianchi type I for anisotropic fluid in [Formula: see text] theory of gravity which involves scalar potential. For this purpose, we consider power law assumptions of coupling function and scalar field along with the proportionality condition of expansion and shear scalars. We choose two [Formula: see text] models and obtain exact solutions of field equations in both cases. For these constructed models, the behavior of different physical quantities like EoS parameter, self-interacting potential as well as deceleration and skewness parameters are explored and illustrated graphically for the feasible ranges of free parameters. It is concluded that anisotropic fluid approaches isotropy in later cosmic times for both models.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850087 ◽  
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary

Warm generalized Chaplygin gas inflation is being studied by assuming power-law plateau and inverse symmetric potentials with standard scalar field model. We consider strong dissipative regime with generalized dissipative coefficient and extract the various inflationary parameters such as scalar power spectrum, spectral index, tensor-to-scalar ratio and running of spectral index. It is found that both inflationary potentials favor the strong dissipative regime. Also, we construct the [Formula: see text]–[Formula: see text] (running of spectral index versus spectral index) and [Formula: see text]–[Formula: see text] (tensor-to-scalar ratio versus spectral index) planes and found that the trajectories of these planes favor WMAP 7 [Formula: see text] WMAP 9 and latest Planck data.


Sign in / Sign up

Export Citation Format

Share Document