scholarly journals Observations from the 26th November 2019 Albania earthquake: the earthquake engineering field investigation team (EEFIT) mission

2021 ◽  
Vol 19 (5) ◽  
pp. 2013-2044 ◽  
Author(s):  
Fabio Freddi ◽  
Viviana Novelli ◽  
Roberto Gentile ◽  
Enes Veliu ◽  
Stoyan Andreev ◽  
...  

AbstractOn the 26th of November 2019, an earthquake of moment magnitude 6.4 struck the northwest region of Albania as the result of thrust faulting near the convergent boundary of the Africa and Eurasia plates causing widespread damage to buildings in the city of Durrës and the surrounding areas. Based on the official data from the national authorities, the earthquake caused 51 casualties and 985 million-euro losses, corresponding to 7.5% of the 2018 gross domestic product. This paper summarises field observations made by the Earthquake Engineering Field Investigation Team (EEFIT) after the event. The paper presents an overview of the seismological aspects of the earthquake together with a brief overview of the damage, official loss statistics and the estimated macro- and socio-economic consequences of the event. In addition, it provides a summary of the observed damage to both recent and historical buildings as well as the description of several case studies to illustrate the characteristic damage patterns observed in the main structural typologies of the Albanian building stock. These observations try to identify possible links between the observed damage patterns and the deficiencies in construction practice and use of inappropriate retrofit techniques for historical assets. As many severe damages were observed on modern buildings, this also allows the identification of some gaps and possible areas of development of the current seismic design code. In the end, the lessons learned from the field survey are resumed.

Author(s):  
A. M. Chandler ◽  
J. W. Pappin ◽  
A. W. Coburn

Ten days after the Newcastle, Australia earthquake of 28 December, 1989, the UK-based Earthquake Engineering Field Investigation Team (EEFIT) mounted a five day mission to the affected area. This paper presents the findings of the EEFIT investigation and subsequent follow up studies in relation to the extent of building damage and its distribution within the City of Newcastle and the surrounding urban area. Results are based on both detailed street surveys and general damage surveys, the former carried out in two areas, namely the heavily damaged suburban district of Hamilton (3km west of the city centre) and the Newcastle central business district. The findings of these surveys have provided valuable information on the vulnerability of building stock of types common to other parts of Australia, the UK and elsewhere, and hence form an important database for the accurate assessment of seismic risk to buildings in regions of low seismicity. This information will assist the development of realistic, economical seismic code provisions for building design and construction in low-risk areas. An important feature arising from the surveys and subsequent analytical studies of site response in the heavily damaged districts within the Hunter River alluvial basin is that, contrary to reports published by the Institution of Engineers, Australia amongst others, the areas of deep alluvial soil and fill do not correlate strongly with the more heavily damaged districts determined from post-earthquake assessments. Hence, suggestions that this form of site soil amplification effect played a major part in the distribution and extent of heavy damage in this earthquake are somewhat misleading for the future development of planning and design regulations. Furthermore, the results of site response analyses show that it is more likely to be the shallower soils near the border of the alluvial basin which tend to amplify bedrock ground motions generated by this type of earthquake.


2018 ◽  
Vol 763 ◽  
pp. 61-71 ◽  
Author(s):  
George Charles Clifton ◽  
Gregory A. MacRae

First the Canterbury earthquake series of 2010/2012 and then the Kaikoura Earthquake of 2016 have significantly impacted the building stock in central and southern New Zealand, subjecting a wide range of buildings and building components to earthquake shaking ranging from moderate to severe. The economic and social costs of these earthquakes have been severe, but the lessons learned on how buildings and building systems designed and detailed to New Zealand provisions have performed have been invaluable. We have learned more about this from these earthquakes then from the many reconnaissance trips undertaken to overseas earthquakes over the 50 years of the New Zealand Society for Earthquake Engineering. This paper focusses on the performance of steel framed buildings in two major New Zealand cities, Christchurch and Wellington, with greatest emphasis on multi-storey buildings, but also covering light steel framed housing. It addresses such issues as the magnitude and structural impact of the earthquake series, how the various systems performed against the design expectations and briefly covers some of the research underway to quantify where there were differences between the observed performance and the expected performance.


1997 ◽  
Vol 13 (4) ◽  
pp. 565-584 ◽  
Author(s):  
Stephanie A. King ◽  
Anne S. Kiremidjian ◽  
Nesrin Basöz ◽  
Kincho Law ◽  
Mladen Vucetic ◽  
...  

A comprehensive methodology for evaluating the socio-economic impacts of large earthquakes was developed during a three-year project carried out by a team of researchers assembled by the nonprofit organization California Universities for Research in Earthquake Engineering (CUREe). New models were developed for some of the methodology components, such as the identification and ranking of critical facilities. For other components, such as the estimation of building and lifeline component damage, existing models from the ATC-13 and NIBS studies were adopted and modified for use within a GIS environment. The methodology was illustrated through a case study for the city of Palo Alto, California. Damage and loss estimates were made for several earthquake scenarios. Critical buildings were identified and the water distribution system for the city was analyzed in terms of its post-earthquake service capacity. An analysis of the hospital facilities in Palo Alto was made to illustrate the use of benefit-cost analysis for seismic rehabilitation decisions.


Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Michael M. Santos ◽  
João C. G. Lanzinha ◽  
Ana Vaz Ferreira

Having in mind the objectives of the United Nations Development Agenda 2030, which refers to the sustainable principles of a circular economy, it is urgent to improve the performance of the built environment. The existing buildings must be preserved and improved in order to reduce their environmental impact, in line with the need to revert climate change and reduce the occurrence of natural disasters. This work had as its main goal to identify and define a methodology for promoting the rehabilitation of buildings in the Ponte Gêa neighborhood, in the city of Beira, Mozambique, with an emphasis on energy efficiency, water efficiency, and construction and demolition waste management. The proposed methodology aims to create a decision support method for creating strategic measures to be implemented by considering the three specific domains—energy, water, and waste. This model allows for analyzing the expected improvement according to the action to be performed, exploring both individual and community solutions. It encompasses systems of standard supply that can reveal greater efficiency and profitability. Thus, the in-depth knowledge of the characteristics of urban space and buildings allows for establishing guidelines for the renovation process of the neighborhood.


2021 ◽  
Vol 11 (11) ◽  
pp. 5108
Author(s):  
María Esther Liébana-Durán ◽  
Begoña Serrano-Lanzarote ◽  
Leticia Ortega-Madrigal

In order to achieve the EU emission reduction goals, it is essential to renovate the building stock, by improving energy efficiency and promoting total decarbonisation. According to the 2018/844/EU Directive, 3% of Public Administration buildings should be renovated every year. So as to identify the measures to be applied in those buildings and obtain the greatest reduction in energy consumption at the lowest cost, the Directive 2010/31/EU proposed a cost-optimisation-based methodology. The implementation of this allowed to carry out studies in detail in actual scenarios for the energy renovation of thermal envelopes of public schools in the city of Valencia. First, primary school buildings were analysed and classified into three representative types. For each type, 21 sets of measures for improving building thermal envelopes were proposed, considering the global cost, in order to learn about the savings obtained, the repayment term for the investment made, the percentage reduction in energy consumption and the level of compliance with regulatory requirements. The result and conclusions will help Public Administration in Valencia to draw up an energy renovation plan for public building schools in the city.


Author(s):  
Iunio Iervolino ◽  
Pasquale Cito ◽  
Chiara Felicetta ◽  
Giovanni Lanzano ◽  
Antonio Vitale

AbstractShakeMap is the tool to evaluate the ground motion effect of earthquakes in vast areas. It is useful to delimit the zones where the shaking is expected to have been most significant, for civil defense rapid response. From the earthquake engineering point of view, it can be used to infer the seismic actions on the built environment to calibrate vulnerability models or to define the reconstruction policies based on observed damage vs shaking. In the case of long-lasting seismic sequences, it can be useful to develop ShakeMap envelopes, that is, maps of the largest ground intensity among those from the ShakeMap of (selected) events of a seismic sequence, to delimit areas where the effects of the whole sequence have been of structural engineering relevance. This study introduces ShakeMap envelopes and discusses them for the central Italy 2016–2017 seismic sequence. The specific goals of the study are: (i) to compare the envelopes and the ShakeMap of the main events of the sequence to make the case for sequence-based maps; (ii) to quantify the exceedance of design seismic actions based on the envelopes; (iii) to make envelopes available for further studies and the reconstruction planning; (iv) to gather insights on the (repeated) exceedance of design seismic actions at some sites. Results, which include considerations of uncertainty in ShakeMap, show that the sequence caused exceedance of design hazard in thousands of square kilometers. The most relevant effects of the sequence are, as expected, due to the mainshock, yet seismic actions larger than those enforced by the code for structural design are found also around the epicenters of the smaller magnitude events. At some locations, the succession of ground-shaking that has excited structures, provides insights on structural damage accumulation that has likely taken place; something that is not accounted for explicitly in modern seismic design. The envelopes developed are available as supplemental material.


Author(s):  
Marco Donà ◽  
Pietro Carpanese ◽  
Veronica Follador ◽  
Luca Sbrogiò ◽  
Francesca da Porto

Abstract Seismic risk assessment at the territorial level is now widely recognised as essential for countries with intense seismic activity, such as Italy. Academia is called to give its contribution in order to synergically deepen the knowledge about the various components of this risk, starting from the complex evaluation of vulnerability of the built heritage. In line with this, a mechanics-based seismic fragility model for Italian residential masonry buildings was developed and presented in this paper. This model is based on the classification of the building stock in macro-typologies, defined by age of construction and number of storeys, which being information available at national level, allow simulating damage scenarios and carrying out risk analyses on a territorial scale. The model is developed on the fragility of over 500 buildings, sampled according to national representativeness criteria and analysed through the Vulnus_4.0 software. The calculated fragility functions were extended on the basis of a reference model available in the literature, which provides generic fragilities for the EMS98 vulnerability classes, thus obtaining a fragility model defined on the five EMS98 damage states. Lastly, to assess the reliability of the proposed model, this was used to simulate damage scenarios due to the 2009 L’Aquila earthquake. Overall, the comparison between model results and observed damage showed a good fit, proving the model effectiveness.


1982 ◽  
Vol 72 (3) ◽  
pp. 841-861
Author(s):  
Hojjat Adeli

abstract On 28 July 1981 at 17:22 UTC, the Kerman province of southern Iran was shaken by the largest and the most destructive earthquake in its history. Its surface-wave magnitude was about 7.2. The epicenter of the earthquake was located about 45 km southeast of the city of Kerman, the capital of the Kerman province. The shock killed nearly 3,000 people, left more than 31,000 homeless, and destroyed virtually all buildings in the epicentral region within a radius of 30 km. The hardest hit place was the town of Sirch where about 2,000 people died out of a population of 3,500. Surface fractures were observed in several areas, and the earthquake was apparently associated with a fresh surface normal faulting. The maximum vertical displacement was about 1 m. The maximum width of the fracture was 0.5 m. Also, extensive landsliding and numerous rockfalls were observed within the area of maximum damage. Most houses in the epicentral area are of adobe construction, made of sundried clay brick walls, and heavy domed roofs or vaults with clay or mud mortar. Most casualties were due to the collapse of these adobe buildings. However, the performance of unreinforced or reinforced brick buildings, historical monuments, steel buildings, and other types of structures during the earthquake is also discussed in this paper.


2021 ◽  
Vol 6 (11) ◽  
pp. 289-304
Author(s):  
Ahmet Cihat ARI

With the increase of the population recently, changes have occurred in the design and construction techniques of the buildings due to the insufficient building stock. With the development of science and technology, new construction techniques have emerged in the construction and design of structures. In the global population increase, high-rise buildings were built to meet the need for shelter and these structures were built with the development of technology. However, high-rise buildings have become the symbol of technological development for countries and cities. Since the 21st century, the construction of high-rise buildings in cities with different designs and new construction techniques has provided the development of architecture and engineering. It is important to design high-rise buildings in accordance with the culture and texture of the city. In addition, high-rise buildings should be built as structures resistant to natural disasters such as earthquakes, fires and floods. For this reason, the design and construction techniques of high-rise buildings have become a research subject in the field of architecture and engineering. The aim of this study is to examine the designs and construction techniques of high-rise buildings. In the first part of the study, the concept of high rise building and its historical development are discussed. In the second part of the study, the designs and construction techniques of high-rise buildings are investigated. In addition, the study was conducted to examine the high structure by giving examples from the world and Turkey. Within the scope of the study, literature researches such as domestic and international articles, books, published theses, web resources were conducted and data were collected. As a result of the examinations made within the scope of the study, it is important to select the building materials in accordance with the characteristics of the building materials in the design and construction techniques of high-rise buildings with the development of technology. Therefore, the architect should know the properties of the materials in the design of high-rise buildings and use them in accordance with the properties of the material in the construction of the buildings. In addition, increasing the height of the building by making aerodynamic designs in high buildings reduces the effect of the wind speed.


Sign in / Sign up

Export Citation Format

Share Document