scholarly journals Biological and trophic consequences of genetic introgression between endemic and invasive Barbus fishes

Author(s):  
Vanessa De Santis ◽  
Silvia Quadroni ◽  
Robert J. Britton ◽  
Antonella Carosi ◽  
Catherine Gutmann Roberts ◽  
...  

AbstractGenetic introgression with native species is recognized as a detrimental impact resulting from biological invasions involving taxonomically similar invaders. Whilst the underlying genetic mechanisms are increasingly understood, the ecological consequences of introgression are relatively less studied, despite their utility for increasing knowledge on how invasion impacts can manifest. Here, the ecological consequences of genetic introgression from an invasive congener were tested using the endemic barbel populations of central Italy, where the invader was the European barbel Barbus barbus. Four populations of native Barbus species (B. plebejus and B. tyberinus) were studied: two purebred and two completely introgressed with alien B. barbus. Across the four populations, differences in their biological traits (growth, body condition and population demographic structure) and trophic ecology (gut content analysis and stable isotope analysis) were tested. While all populations had similar body condition and were dominated by fish up to 2 years of age, the introgressed fish had substantially greater lengths at the same age, with maximum lengths 410–460 mm in hybrids versus 340–360 mm in native purebred barbel. The population characterized by the highest number of introgressed B. barbus alleles (81 %) had the largest trophic niche and a substantially lower trophic position than the other populations through its exploitation of a wider range of resources (e.g. small fishes and plants). These results attest that the genetic introgression of an invasive congener with native species can result in substantial ecological consequences, including the potential for cascading effects.

2021 ◽  
Author(s):  
Vanessa De Santis ◽  
Silvia Quadroni ◽  
Robert J. Britton ◽  
Antonella Carosi ◽  
Catherine Gutmann Roberts ◽  
...  

Abstract Genetic introgression with native species is recognized as a detrimental impact resulting from biological invasions involving taxonomically similar invaders. Whilst the underlying genetic mechanisms are increasingly understood, the ecological consequences of introgression are relatively less studied, despite their utility for increasing knowledge on how invasion impacts can manifest. Here, the ecological consequences of genetic introgression from an invasive congener were tested using the endemic barbel populations of central Italy, where the invader was the European barbel Barbus barbus. Four populations of native Barbus species (B. plebejus and B. tyberinus) were studied: two purebred and two completely introgressed with alien B. barbus. Across the four populations, differences in their biological traits (growth, body condition and population demographic structure) and trophic ecology (gut content analysis and stable isotope analysis) were tested. While all populations had similar body condition and were dominated by fish up to 2 years of age, the introgressed fish had substantially greater lengths at the same age, with maximum lengths 410–460 mm in hybrids versus 340–360 mm in native purebred barbel. The population characterized by the highest number of introgressed B. barbus alleles (81%) had the largest trophic niche and a substantially lower trophic position than the other populations through their exploitation of a wider range of resources (e.g. small fishes and plants). These results attest that the genetic introgression of an invasive congener with native species can results in substantial ecological consequences, including potential cascading effects.


2001 ◽  
Vol 58 (7) ◽  
pp. 1419-1429 ◽  
Author(s):  
Ben K Greenfield ◽  
Thomas R Hrabik ◽  
Chris J Harvey ◽  
Stephen R Carpenter

Recent research suggests that wetland abundance surrounding lakes, fish trophic position, and fish community composition may influence the bioavailability of mercury (Hg) to fish. To compare the importance of these spatial and biological factors to chemical factors known to influence bioavailability, we determined the relationship between 24 lake traits and Hg concentrations in yellow perch (Perca flavescens; whole fish samples) for 43 northern Wisconsin lakes. Independent variables included biological traits such as fish trophic position and body condition, spatial traits such as lake hydrologic position and surrounding wetland abundance, and chemical traits such as pH and water color. The strongest predictor of fish Hg levels was pH (R2 = 0.42; p < 0.002). Of the biological traits measured, yellow perch body condition explained significant additional variation (final R2 = 0.54; p = 0.024). Trophic position explained limited variability and population abundance of planktivores and piscivores were not correlated to perch Hg levels. Regression tree models indicated that small lakes with greater than 6% wetland in their watershed have moderately elevated fish Hg levels. Our results indicate that within-lake chemistry and fish growth patterns are stronger correlates of Hg levels in yellow perch than spatial traits, trophic position, or fish community attributes.


Author(s):  
Francesco Mancini ◽  
Raffaele De Giorgi ◽  
Alessandro Ludovisi ◽  
Salvatrice Vizzini ◽  
Giorgio Mancinelli

AbstractThe introduction of the amphipod Dikerogammarus villosus in European fresh waters is to date recognized as a threat to the integrity of invaded communities. Predation by D. villosus on native benthic invertebrates is assumed as the key determinant of its ecological impact, yet available information describe the species as a primary consumer as well as a carnivore depending on local conditions. Here, we assessed the trophic position (TP) of D. villosus in Lake Trasimeno, a recently invaded lentic system in central Italy, using the CN isotopic signatures of individuals captured in winter spanning two orders of magnitude in body size. TP estimations were compared with those characterizing the native amphipod Echinogammarus veneris and other representative invertebrate predators. On average, D. villosus showed a trophic position higher than E. veneris, and comparable with that of odonate nymphs. An in-depth analysis revealed that large-sized individuals had a trophic position of 3.07, higher than odonates and close to that of the hirudinean predator Erpobdella octoculata, while small-sized specimens had a trophic position of 2.57, similar to that of E. veneris (2.41). These findings indicate that size-related ontogenetic shifts in dietary habits may per se vary the nature of the interaction between Dikerogammarus villosus and native invertebrates from competition to predation. Information collated from published isotopic studies corroborated the generality of our results. We conclude that intra-specific trophic flexibility may potentially amplify and make more multifaceted the impact of the species on other invertebrate species in invaded food webs.


2017 ◽  
Vol 284 (1857) ◽  
pp. 20170923 ◽  
Author(s):  
José M. Riascos ◽  
Marco A. Solís ◽  
Aldo S. Pacheco ◽  
Manuel Ballesteros

The trophic flow of a species is considered a characteristic trait reflecting its trophic position and function in the ecosystem and its interaction with the environment. However, climate patterns are changing and we ignore how patterns of trophic flow are being affected. In the Humboldt Current ecosystem, arguably one of the most productive marine systems, El Niño-Southern Oscillation is the main source of interannual and longer-term variability. To assess the effect of this variability on trophic flow we built a 16-year series of mass-specific somatic production rate (P/B) of the Peruvian scallop ( Argopecten purpuratus ), a species belonging to a former tropical fauna that thrived in this cold ecosystem. A strong increase of the P/B ratio of this species was observed during nutrient-poor, warmer water conditions typical of El Niño, owing to the massive recruitment of fast-growing juvenile scallops. Trophic ecology theory predicts that when primary production is nutrient limited, the trophic flow of organisms occupying low trophic levels should be constrained (bottom-up control). For former tropical fauna thriving in cold, productive upwelling coastal zones, a short time of low food conditions but warm waters during El Niño could be sufficient to waken their ancestral biological features and display massive proliferations.


Author(s):  
Víctor M. Muro-Torres ◽  
Felipe Amezcua ◽  
Raul E. Lara-Mendoza ◽  
John T. Buszkiewicz ◽  
Felipe Amezcua-Linares

The trophic ecology of the chihuil sea catfish Bagre panamensis was studied through high-resolution variations in its feeding habits and trophic position (TP) in the SE Gulf of California, relevant to sex, size and season. The combined use of stomach content (SCA) and stable isotope analysis (SIA) allowed us to perform these analyses and also estimate the TP of its preys. Results of this study show that the chihuil sea catfish is a generalist and opportunistic omnivore predator that consumes primarily demersal fish and peneid shrimps. Its diet did not vary with climatic season (rainy or dry), size or sex. Results from the SIA indicated high plasticity in habitat use and prey species. The estimated TP value was 4.19, which indicates a tertiary consumer from the soft bottom demersal community in the SE Gulf of California, preying on lower trophic levels, which aids in understanding the species' trophic role in the food web. Because this species and its prey are important to artisanal and industrial fisheries in the Gulf of California, diet assimilation information is useful for the potential establishment of an ecosystem-based fisheries management in the area.


2015 ◽  
Vol 36 (3) ◽  
pp. 287-299 ◽  
Author(s):  
Edward Brede

Human mediated introductions of non-native species can pose a major threat to global biodiversity on several accounts i.e. through competition, the introduction of novel pathogens, and genetic pollution. Where hybridization occurs between two closely related species the F1 offspring are usually phenotypically discernible whereas F2 hybrid, backcrossed or admixed individuals become more difficult to separate. At this point the utilization of molecular methods is required in conservation efforts to differentiate and manage populations. This study demonstrated how a possible threat of hybridization from an introduced non-native (T. carnifex) with a protected native newt species (T. cristatus) could be investigated with molecular tools, and examined the current extent of its genetic introgression over an 80 years period. The results confirmed that hybridization had taken place at the site of introduction (and continues to do so), and that historically limited local dispersal of both non-natives and/or hybrids had occurred sometime in the past. However, the data suggests that although dispersal of hybrids into a local satellite site may still be occuring, hybridization with native species appears limited.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1059
Author(s):  
Ambrosius Josef Martin Dörr ◽  
Melissa Scoparo ◽  
Irene Cardinali ◽  
Gianandrea La Porta ◽  
Barbara Caldaroni ◽  
...  

The deliberate or accidental introduction of invasive alien species (IAS) causes negative ecological and economic impacts altering ecosystem processes, imperiling native species and causing damage to human endeavors. A monthly monitoring program was performed in Lake Trasimeno (Central Italy) from July 2018 to July 2019 in order to provide an upgrade of the population ecology of Procambarus clarkii and to assess the genetic diversity by analyzing the relationships among mitochondrial DNA diversity. Our results confirmed that P. clarkii is well acclimatized in the lake, revealing a stable population structure favored by the resources and conditions typical of this ecosystem, which seem to be optimal for the maintenance of the species. Four distinct mitochondrial haplotypes were detected, but one of them was clearly overrepresented (76%), suggesting that a single predominant introduction event may have occurred in this area, likely followed by secondary events. The identification of the typical genetic variants provides a better understanding of the evolutionary scenarios of P. clarkii in this biotope and it can be helpful in management plans concerning the expanding populations of this invasive alien species.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lucian Pârvulescu ◽  
Dan Ioan Stoia ◽  
Kristian Miok ◽  
Mihaela Constanţa Ion ◽  
Adela Estera Puha ◽  
...  

Multiple causes can determine the disturbance of natural equilibrium in a population of a species, with a common one being the presence of invasive competitors. Invasives can drive native species to the resettlement of the trophic position, changing reproduction strategies or even daily normal behaviours. Here, we investigated the hypothesis that more effective anatomical features of an intruder (Faxonius limosus) come with increased boldness behaviour, contributing to their invasion success in competition against the native species (Pontastacus leptodactylus). We tested the boldness of specimens representing the two species by video-based assessment of crayfish individuals’ attempts to leave their settlement microenvironment. The experiment was followed by a series of measurements concerning chelae biometry, force and muscle energetics. The native species was less expressive in terms of boldness even if it had larger chelae and better muscular tissue performance. In contrast, because of better biomechanical construction of the chelae, the invasive species was capable of twice superior force achievements, which expectedly explained its bolder behaviour. These findings suggest that, in interspecific agonistic interactions, the behaviour strategy of the invasive crayfish species is based on sheer physical superiority, whereas the native crayfish relies on intimidation display.


2020 ◽  
Vol 42 (1) ◽  
pp. 107-114
Author(s):  
Lorenzo Talarico ◽  
Marco Ciambotta ◽  
Andrea Tiberi ◽  
Marco Mattoccia

Abstract Amphibians are experiencing an ascertained global decline, which causes include the introduction of alien species and the (anthropogenic) hybridization between native and exotic taxa. Detecting introductions and assessing their impact on populations of native species is crucial for amphibian conservation. We used mitochondrial and nuclear markers to reveal introgressive hybridization between the native Bombina pachypus and the exotic B. variegata (probably introduced from Albania) in a population from a protected area of central Italy. Almost all genotyped individuals were genetically admixed, showing a larger proportion of the allochthonous genome. To our knowledge, this study provides the first evidence of successful hybridization between the two species (we found both putative F1 and backcrosses), hence representing a new threat to the conservation of the endangered, Italian-endemic B. pachypus.


Sign in / Sign up

Export Citation Format

Share Document