scholarly journals Anisotropy of Unstably Stratified Near-Surface Turbulence

Author(s):  
Ivana Stiperski ◽  
Marcelo Chamecki ◽  
Marc Calaf

AbstractClassic Monin–Obukov similarity scaling states that in a stationary, horizontally homogeneous flow, in the absence of subsidence, turbulence is dictated by the balance between shear production and buoyancy production/destruction, whose ratio is characterized by a single universal scaling parameter. An evident breakdown in scaling is observed though, through large scatter in traditional scaling relations for the horizontal velocity variances under unstable stratification, or more generally in complex flow conditions. This breakdown suggests the existence of processes other than local shear and buoyancy that modulate near-surface turbulence. Recent studies on the role of anisotropy in similarity scaling have shown that anisotropy, even if calculated locally, may encode the information about these missing processes. We therefore examine the possible processes that govern the degree of anisotropy in convective conditions. We first use the reduced turbulence-kinetic-energy budget to show that anisotropy in convective conditions cannot be uniquely described by a balance of buoyancy and shear production and dissipation, but that other terms in the budget play an important role. Subsequently, we identify a ratio of local time scales that acts as a proxy for the anisotropic state of convective turbulence. This ratio can be used to formulate a new non-dimensional group. Results show that building on this approach the role of anisotropy in scaling relations over complex terrain can be placed into a more generalized framework.

2002 ◽  
Author(s):  
David M. Farmer ◽  
Johannes Gemmrich

1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.


2017 ◽  
Vol 56 (4) ◽  
pp. 1083-1098 ◽  
Author(s):  
Matthew E. Jeglum ◽  
Sebastian W. Hoch ◽  
Derek D. Jensen ◽  
Reneta Dimitrova ◽  
Zachariah Silver

AbstractLarge temperature fluctuations (LTFs), defined as a drop of the near-surface temperature of at least 3°C in less than 30 min followed by a recovery of at least half of the initial drop, were frequently observed during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. Temperature time series at over 100 surface stations were examined in an automated fashion to identify and characterize LTFs. LTFs occur almost exclusively at night and at locations elevated 50–100 m above the basin floors, such as the east slope of the isolated Granite Mountain (GM). Temperature drops associated with LTFs were as large as 13°C and were typically greatest at heights of 4–10 m AGL. Observations and numerical simulations suggest that LTFs are the result of complex flow interactions of stably stratified flow with a mountain barrier and a leeside cold-air pool (CAP). An orographic wake forms over GM when stably stratified southwesterly nocturnal flow impinges on GM and is blocked at low levels. Warm crest-level air descends in the lee of the barrier, and the generation of baroclinic vorticity leads to periodic development of a vertically oriented vortex. Changes in the strength or location of the wake and vortex cause a displacement of the horizontal temperature gradient along the slope associated with the CAP edge, resulting in LTFs. This mechanism explains the low frequency of LTFs on the west slope of GM as well as the preference for LTFs to occur at higher elevations later at night, as the CAP depth increases.


Author(s):  
Terence J. Pagano ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
Hengchun Ye ◽  
F. Martin Ralph ◽  
...  

AbstractAtmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT and AIRS satellite observations are used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), and integrated water vapor transport (IVT) are analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22-38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36-52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% compared to 52% explained variance for USA West Coast). Use of an alternate static stability measure–the bulk Richardson number–yields a similar explained variance (47%). Lastly, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3%/14.7% during weak/strong IVT) than in stable conditions (0.58%/6.15%).


2021 ◽  
Author(s):  
Tomas Jonathan ◽  
Mike Bell ◽  
Helen Johnson ◽  
David Marshall

<p>The Atlantic Meridional Overturning Circulations (AMOC) is crucial to our global climate, transporting heat and nutrients around the globe. Detecting  potential climate change signals first requires a careful characterisation of inherent natural AMOC variability. Using a hierarchy of global coupled model  control runs (HadGEM-GC3.1, HighResMIP) we decompose the overturning circulation as the sum of (near surface) Ekman, (depth-dependent) bottom velocity, eastern and western boundary density components, as a function of latitude. This decomposition proves a useful low-dimensional characterisation of the full 3-D overturning circulation. In particular, the decomposition provides a means to investigate and quantify the constraints which boundary information imposes on the overturning, and the relative role of eastern versus western contributions on different timescales. </p><p>The basin-wide time-mean contribution of each boundary component to the expected streamfunction is investigated as a function of depth, latitude and spatial resolution. Regression modelling supplemented by Correlation Adjusted coRrelation (CAR) score diagnostics provide a natural ranking of the contributions of the various components in explaining the variability of the total streamfunction. Results reveal the dominant role of the bottom component, western boundary and Ekman components at short time-scales, and of boundary density components at decadal and longer timescales.</p>


2021 ◽  
Author(s):  
Zhenyu Zhang ◽  
Patrick Laux ◽  
Joël Arnault ◽  
Jianhui Wei ◽  
Jussi Baade ◽  
...  

<p>Land degradation with its direct impact on vegetation, surface soil layers and land surface albedo, has great relevance with the climate system. Assessing the climatic and ecological effects induced by land degradation requires a precise understanding of the interaction between the land surface and atmosphere. In coupled land-atmosphere modeling, the low boundary conditions impact the thermal and hydraulic exchanges at the land surface, therefore regulates the overlying atmosphere by land-atmosphere feedback processes. However, those land-atmosphere interactions are not convincingly represented in coupled land-atmosphere modeling applications. It is partly due to an approximate representation of hydrological processes in land surface modeling. Another source of uncertainties relates to the generalization of soil physical properties in the modeling system. This study focuses on the role of the prescribed physical properties of soil in high-resolution land surface-atmosphere simulations over South Africa. The model used here is the hydrologically-enhanced Weather Research and Forecasting (WRF-Hydro) model. Four commonly used global soil datasets obtained from UN Food and Agriculture Organization (FAO) soil database, Harmonized World Soil Database (HWSD), Global Soil Dataset for Earth System Model (GSDE), and SoilGrids dataset, are incorporated within the WRF-Hydro experiments for investigating the impact of soil information on land-atmosphere interactions. The simulation results of near-surface temperature, skin temperature, and surface energy fluxes are presented and compared to observational-based reference dataset. It is found that simulated soil moisture is largely influenced by soil texture features, which affects its feedback to the atmosphere.</p>


2021 ◽  
Author(s):  
Jonghun Kam ◽  
Sungyoon Kim ◽  
Joshua Roundy

<p>This study used the North American Multi-Model Ensemble (NMME) system to understand the role of near surface temperature in the prediction skill for US climate extremes. In this study, the forecasting skill was measured by anomaly correlation coefficient (ACC) between the observed and forecasted precipitation (PREC) or 2-meter air temperature (T2m) over the contiguous United States (CONUS) during 1982–2012. The strength of the PREC-T2m coupling was measured by ACC between observed PREC and T2m or forecasted PREC and T2m over the CONUS. This study also assessed the NMME forecasting skill for the summers of 2004 (spatial anomaly correlation between PREC and T2m: 0.05), 2011 (-0.65), and 2012 (-0.60) when the PREC-T2m coupling is weaker or stronger than the 1982–2012 climatology (ACC:-0.34). This study found that most of the NMME models show stronger (negative) PREC-T2m coupling than the observed coupling, indicating that they fail to reproduce interannual variability of the observed PREC-T2m coupling. Some NMME models with skillful prediction for T2m show the skillful prediction of the precipitation anomalies and US droughts in 2011 and 2012 via strong PREC-T2m coupling despite the fact that the forecasting skill is year-dependent and model-dependent. Lastly, we explored how the forecasting skill for SSTs over north Pacific and Atlantic Oceans affects the forecasting skill for T2m and PREC over the US. The findings of this study suggest a need for the selective use of the current NMME seasonal forecasts for US droughts and pluvials.</p>


2021 ◽  
Author(s):  
Manuela Lehner ◽  
Mathias W. Rotach

<p>The stable boundary layer is typically characterized by weak and sometimes intermittent turbulence, particularly under very stable conditions. In mountain valleys, nocturnal temperature inversions and cold-air pools form frequently under synoptically undisturbed and clear-sky conditions, which will dampen turbulence. On the other hand, thermally driven slope and valley winds form under the same conditions, which interact with each other and are both characterized by jet-like wind profiles, thus resulting in both horizontal and vertical wind shear, which creates a persistent source for turbulence production. Data will be presented from six flux towers in the Austrian Inn Valley, which are part of the i-Box measurement platform, designed to study near-surface turbulence in complex, mountainous terrain. The six sites are located within an approximately 6.5-km long section of the 2-3-km wide valley approximately 20 km east of Innsbruck. The data are analyzed to characterize the strength and intermittency of turbulence kinetic energy and turbulent fluxes across the valley and to determine whether the persistent wind shear associated with thermally driven flows is sufficient to generate continuous turbulence.</p>


Sign in / Sign up

Export Citation Format

Share Document