Calculation of Pressure Drop in Unirrigated Packed Contact Devices Applying ANSYS Fluent Software

2018 ◽  
Vol 54 (1-2) ◽  
pp. 130-135
Author(s):  
A. R. Faizov ◽  
S. K. Churakova ◽  
G. M. Sidorov
2018 ◽  
Vol 22 (6) ◽  
pp. 10-14 ◽  
Author(s):  
A.V. Dmitriev ◽  
I.N. Madyshev ◽  
O.S. Dmitrieva

In order to solve the problem of increasing the efficiency of purification of industrial gas emissions from aerosol particles, the authors developed a jet-film contact device, described the principle of its operation. The results of numerical studies to determine the efficiency of aerosol deposition on a fluid film of a jet-film contact device are presented. The study was carried out in the ANSYS Fluent software package, using the turbulence model of the k-ω SST model. Different variants of the ratio of the height to the width of the structure of the device are considered. The velocity of the gas flow and the sizes of the dispersed particles are changed. It is shown that to achieve high technical and economic performance of heat and mass transfer devices with jet-film contact devices, they should be designed taking into account the choice of optimum values for the height of the downcomer (kb = 0,46÷0,53).


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
S.A. Razavi Alavi ◽  
E. Nemati Lay ◽  
Z.S. Alizadeh Makhmali

Double-cyclone in fluidized bed drying is an important equipment which reflects the conditions of drying in HDPE slurry process. Cyclone is an important unite of fluidized bed drying in order to move the solid particles outward to its wall. Therefore, flow pattern created in fluidized bed will affect industrial cyclones installed in dryer for dust removing. Pressure drop of the cyclones is an effective parameter represents the drying behavior. Substantially, geometry of cyclone, inlet flow rate of gas, density and particle size distribution (PSD) can affect the pressure drop value. Fluidized bed hydrodynamic regime is very complex and must be understood to improve fluidized bed operations through theoretical, industrial and CFD study of double-cyclone. Pressure drop is introduced as parameter related to the cyclone efficiency can be calculated with ANSYS Fluent software in the Eulerian-Lagrangian framework with RNG k-ɛ turbulence model used as a mathematical method. Proper pressure drop concluded from industrial experiments and CFD calculation shows good fluidization of HDPE particles in the bed of nitrogen and powder  to reach the best fluidized bed situation and suitable quality of HDPE powdery product.


2019 ◽  
Vol 213 ◽  
pp. 02025
Author(s):  
Veronika Horová ◽  
Marian Bojko ◽  
Josef Dobeš

The paper deals with numerical modelling of the flow in the intercooler filling line by Adjoint solver to minimize pressure loss. The ANSYS Fluent software was used for the calculations. The basic flow calculation was performed in the first phase. Then the mathematical model with Adjoint solver optimization tool was defined. The numerical calculation was unstable and did not lead to a convergent solution, because of creation of vortexes. The mathematical model was simplified in the second phase. To suppress instabilities and vortices a dynamic viscosity of coolant was adjusted. The pressure gradients between inlet and outlet for unmodified geometry and for modified geometry were evaluated. The final evaluations of pressure drop changes were implemented for modified geometry with original dynamic viscosity of the coolant.


2021 ◽  
Vol 71 (2) ◽  
pp. 31-40
Author(s):  
Bouhabel Bourhane ◽  
Kabar Yassine

Abstract The heat transfer and pressure drop in a microchannel heat sink with 02 mixing chambers with inclined walls were numerically studied. The transport equations have been resolved by the finite volume method using ANSYS Fluent software. The operating fluids are water and Al2O3-water. The results obtained for Reynolds numbers ranging from 187 and 705 show that adding a micro-mixing chamber with a rectangular rib in the microchannel improves the heat transfer and increases the pressure drop compared to conventional microchannels. The new shape of the mixing chamber studied shows a net decrease in pressure drop, which improves the performance of the micro heat sink by 5.6%.


2020 ◽  
Vol 20 (1) ◽  
pp. 88
Author(s):  
Pasymi Pasymi ◽  
Yogi W Budhi ◽  
Yazid Bindar

A combination of the experimental and numerical methods was used to investigate the fluid flow behaviors in a proposed cyclone burner. Recirculation flow and pressure drop, two of the important fluid flow behaviors that affect the burner's performance, have been studied here. Experimentally, the recirculation flow phenomenon in the burner was observed through paper slices dynamic in a transparent burner, and pressure drop was measured using a tube manometer. Meanwhile numerically, the fluid flow behaviors were simulated using the standard k-e turbulence model, under Ansys-Fluent software. The simulation results showed that, at a certain value of inlet aspect ratio (RIA) and initial tangential intensity (IIT), especially for high IIT, the recirculation flow phenomenon was clearly observed in the center of the burner cylinder which closely resembles a tornado-tail. The indication of existence recirculation flow was also found from the experiment results. The study also exhibited that the results of simulated static pressure drop were closely approaching the experiment results, particularly for IIT values £ 4.3. The mean deviation of static pressure between the simulation and the experiment results, for a varied range of RIA and IIT,was about 15%. From the results above, it was obvious that fluid flow behaviors (recirculation flow and static pressure) in the proposed cyclone burner are greatly influenced by the RIA and IIT values, where the IIT effect was more significant compared to the RIA. This study also suggests that, the standard k-e turbulence model could be relied upon to well predict the behaviors of fluid flow in the proposed cyclone burner, at low to moderate swirl intensities.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2014 ◽  
Vol 703 ◽  
pp. 425-429
Author(s):  
Jun Fei Wu ◽  
Zhi Li ◽  
Fan Guo Meng ◽  
Ben Liang Yu

Compared with traditional screw pump,all-metal screw pump have more advantages in the oil extraction. In this paper, all-metal single screw pump's geometric model was made by PROE software; then the dynamic mesh technique was applied to mesh the model and constraint condition was applied in the ANSYS-FLUENT software. 3D flow field was numerical analyzed In that software, the impacts of screw speed on volume flow and volumetric efficiency were concluded, the conclusion can offer some valuable guidances to the all-metal single screw pump's design.


2015 ◽  
Author(s):  
Nilima C. Joshi ◽  
Ayaz J. Khan

ost of the flow phenomena important to modern technology involve turbulence. Propellers generally operate in the very complex flow field that may be highly turbulent and spatially non-uniform. Propeller skew is the single most effective design parameter which has significant influence on reducing propeller induced vibration. Up to date applications of propeller skew does not has a specified criteria for any turbulent model. This paper deals with the model which explains the effect of propeller skewness on hydrodynamic performance related to study of turbulent model via mathematical and numerical modeling. The simulation work is carried out using ANSYS-FLUENT software.


2021 ◽  
Author(s):  
Maryam Habibi ◽  
Mohsen Heidary ◽  
Mohammad Mehdi Tavakol ◽  
Goodarz Ahmadi

Abstract In this study, the dispersion and deposition of particles in the respiratory system attached to a mannequin lying down inside a room were investigated numerically. The respiratory system model was prepared by processing the CT scan images of a volunteer and was attached to a mannequin lying in the middle of a room. The flow field around the mannequin and effects of the thermal plume on the particle aspiration by the mannequin model was simulated using the Ansys-Fluent software. The aspiration efficiency of spherical particles in the airway was studied with the Lagrangian particle trajectory analysis, including the turbulence dispersion effects. For validation of numerical simulations, the aspiration efficiency of the particles obtained from the numerical solution was compared with the case of a standing mannequin. The results are presented for two different modes with upward and downward thermal plumes. For the first mode, due to the strong effect of the thermal plume in the upward direction, the aspiration efficiency of midrange particles increases. However, the aspiration efficiency of large micro-particles decreases for the first mode. For the second mode, with the downward thermal plume, the aspiration efficiency of small micro-particles increases significantly.


Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification


Sign in / Sign up

Export Citation Format

Share Document