scholarly journals Optimized isolation method of humin fraction from mineral soil material

Author(s):  
Jerzy Weber ◽  
Elżbieta Jamroz ◽  
Andrzej Kocowicz ◽  
Magdalena Debicka ◽  
Jakub Bekier ◽  
...  

AbstractHumic substances, including humin fraction, play a key role in the fate of organic and inorganic xenobiotics contaminating the environment. Humin is an important fraction of humic substances, which has been the least studied to date. This is due to the difficulties connected with its isolation that pose a number of methodological problems. Methods of humin fraction isolation can be divided into following main groups: (1) digestion of mineral soil components with HF/HCl followed by alkali extraction of HA and FA; (2) alkali extraction of HA and FA followed by extraction of humin by different organic solvents; and (3) alkali extraction of HA and FA followed by HF/HCl digestion of mineral soil components. Nevertheless, each of these methods has different limitations. We described in detail a useful procedure of humin isolation, in which this fraction was not extracted, but isolated from the soil by removing its soluble organic and mineral components. A modified method of HA and FA extraction with 0.1 M NaOH, according to the International Humic Substances Society, was used in the first step. Then, the mineral components in the residue were digested with the 10% HF/HCl. Unlike the procedures oriented to increase the concentration of organic matter, samples were treated several times with the HF/HCl mixture until the mineral fraction was almost completely digested. The main assumption of the method modification was to obtain the highest yield with the lowest possible ash content, but without affecting humin chemical structure. The results showed that the proposed procedure is characterized by a high efficiency and recovery and, therefore, it can be used to isolate high amounts of humin from soil.

2020 ◽  
Author(s):  
Jerzy Weber ◽  
Elżbieta Jamroz ◽  
Andrzej Kocowicz ◽  
Magdalena Debicka ◽  
Aleksandra Ukalska-Jaruga ◽  
...  

<p>The organic matter is the most important component of soil material, which determines most soil properties. Among humic substances, humin fraction has been the least studied to date, although it usually constitutes over half of their composition. This is probably due to the fact, that humin fraction has highly hydrophobic properties and is insoluble at all pH values, which makes its isolation much more difficult, compared to humic (HA) and fulvic (FA) acid fractions. In addition, humin fraction forms very stable humic-clay complexes with mineral part of the soil (Stevenson 1994), which cannot be destructed during humic substances extraction. According to the literature, the methods of humin fraction isolation can be divided into two main groups: (1) extraction by different organic solvents, and (2) isolation by extraction of HA and FA followed by digestion of mineral soil components. Nevertheless, each of these methods has different limitations.</p><p>We investigated some modifications of the latter method, obtaining humin fraction from eight mollic horizons of Chernozems and Phaeozems, which differed in their physico-chemical properties.</p><p>The first step was to separate HA and FA according to IHSS method described by Swift (1996), however we adopted different shaking procedure. To asses differences, each supernatant obtained was analyzed for the carbon content concentration, which corresponded to HA and FA extracted.</p><p>HA and FA free residue was then digested to reduce the content of mineral components. We used several digestion with 10% HF/HCl , as higher concentrations of HF can result in structural alteration of the organic compounds (Hayes et al. 2017). To find the optimal time of the procedure, the ash content was determined following each digestion stage. After the HF/HCl treatment, the residue was rinsed with 10% HCl to eliminate secondary minerals. The residue was washed with distilled water until the neutral pH, then transferred to dialysis membranes and dialyzed with distilled water until a negative Cl<sup>−</sup> test with AgNO<sub>3</sub>. Afterwards the humin fraction was freeze dried. </p><p>Finally, obtained humin fraction contained various ash content, ranged from 6 to 30%, depending on the soil. The conducted test indicated that: (1) the concentration of carbon in supernatant considerably increased as shaking time was extended to 20 hours, and (2) longer than 4 weeks digestion with HF/HCl did not affect the reduction of the ash content of the humin fraction obtained.    </p><p> </p><p>Literature</p><p>Hayes M.H.B., Mylotte R., Swift R.S. 2017. Humin: Its Composition and Importance in Soil Organic Matter. In: Sparks D.L. (ed) Advances in Agronomy, Vol. 143, Academic Press, Burlington, 47–138.</p><p>Stevenson F.J. 1994. Humus Chemistry; Genesis, Composition, Reaction. 2nd ed. John Wiley & Sons., New York.</p><p>Swift R.S. 1996. Organic matter characterization. In: Sparks, D.L., et al. (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods - Soil Science Society of America, Book Series no 5,  1011-1069.</p><p> </p><p>Acknowledgements</p><p>This work was supported by the National Science Center (NCN) Poland (project No 2018/31/B/ST10/00677 “Chemical and spectroscopic properties of soil humin fraction in relation to their mutual interaction with pesticides").</p>


2004 ◽  
Vol 47 (6) ◽  
pp. 933-943 ◽  
Author(s):  
Maria Regina Torres Boeger ◽  
Luiz Carlos Alves ◽  
Raquel Rejane Bonatto Negrelle

We examined the leaf morphology and anatomy of 89 tree species growing in an area of coastal Atlantic Forest in South Brazil. The majority of the species (> 75%) had small (notophyll and microphyll) elliptical simple leaves with entire margins. These leaves presented a typical anatomical structure consisting of a single epidermal cell layer, single palisade parenchyma cell layer, and spongy parenchyma with 5 to 8 cell layers. The sclerenchyma was limited to the vascular bundles. The majority of the tree species (91%) had leaves with mesomorphic characteristics. Few species depicted leaves with xeromorphic features as would be expected in such oligotrophic sandy soil. These mesomorphic features appeared to be associated to high efficiency mechanisms for nutrient cycling that compensated for the low nutrient content of the mineral soil.


1994 ◽  
Vol 25 (15-16) ◽  
pp. 2685-2695 ◽  
Author(s):  
J. Cegarra ◽  
D. Garcia ◽  
A. Navarro ◽  
M.P. Bernal

2017 ◽  
Vol 38 (2) ◽  
pp. 125-147 ◽  
Author(s):  
Evgeny Lodygin ◽  
Vasily Beznosikov ◽  
Evgeny Abakumov

Abstract Soils of Russian European North were investigated in terms of stability and quality of organic matter as well as in terms of soils organic matter elemental composi­tion. Therefore, soil humic acids (HAs), extracted from soils of different natural zones of Russian North-East were studied to characterize the degree of soil organic matter stabilization along a zonal gradient. HAs were extracted from soil of different zonal environments of the Komi Republic: south, middle and north taiga as well as south tundra. Data on elemental composition of humic acids and fulvic acids (FAs) extracted from different soil types were obtained to assess humus formation mechanisms in the soils of taiga and tundra of the European North-East of Russia. The specificity of HAs elemental composition are discussed in relation to environmental conditions. The higher moisture degree of taiga soils results in the higher H/C ratio in humic substances. This reflects the reduced microbiologic activity in Albeluvisols sods and subsequent conser­vation of carbohydrate and amino acid fragments in HAs. HAs of tundra soils, shows the H/C values decreasing within the depth of the soils, which reflects increasing of aromatic compounds in HA structure of mineral soil horizons. FAs were more oxidized and contains less carbon while compared with the HAs. Humic acids, extracted from soil of different polar and boreal environments differ in terms of elemental composition winch reflects the climatic and hydrological regimes of humification.


1981 ◽  
Vol 53 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Helinä Hartikainen

The extractability of P by the water and anion exchange resin methods and reactions of soil inorganic P were investigated with seven acid mineral soil samples incubated with KOH solutions of various concentrations. The results were compared with the analytical data obtained from three soil samples incubated in a prolonged liming experiment. The resin extraction method proved more effective than the water extraction method. The amounts of P desorbed by both methods seemed to increase exponentially as the pH in the soil suspensions rose. The factors involved were discussed. On the basis of fractionation analyses P reacting to changes in the pH and participating in desorption processes was supposed to originate from secondary NH4F and NaOH soluble reserves. In general, as the acidity decreased NH4F-P increased at the expense of NaOH-P. In heavily limed gyttja soil also H2SO4-P increased. This was possibly induced by the precipitation of mobilized P as a Ca compound. The significance of pH in the extractability of soil P seemed somewhat to lessen as the amount of secondary P increased. The results were in accordance with the conception that liming improves the availability of inorganic P to plants and reduces the need for P fertilization. However, increasing of the soil pH involves the risk that P is more easily desorbed to the recipient water by the eroded soil material carried into the watercourse. Therefore, intensive liming is not recommendable close to the shoreline. Further, it should be taken into account that liming of lakes may also result in eutrophication as desorption of sedimentary inorganic P is enhanced.


2004 ◽  
Vol 39 (16/17) ◽  
pp. 5455-5459 ◽  
Author(s):  
M. D. R. Pizzigallo ◽  
A. Napola ◽  
M. Spagnuolo ◽  
P. Ruggiero

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Obadah Said Solaiman ◽  
Ishak Hashim

In this study, we propose a modified predictor-corrector Newton-Halley (MPCNH) method for solving nonlinear equations. The proposed sixteenth-order MPCNH is free of second derivatives and has a high efficiency index. The convergence analysis of the modified method is discussed. Different problems were tested to demonstrate the applicability of the proposed method. Some are real life problems such as a chemical equilibrium problem (conversion in a chemical reactor), azeotropic point of a binary solution, and volume from van der Waals equation. Several comparisons with other optimal and nonoptimal iterative techniques of equal order are presented to show the efficiency of the modified method and to clarify the question, are the optimal methods always good for solving nonlinear equations?


2016 ◽  
Vol 76 (2) ◽  
Author(s):  
Laksmita Prima SANTI ◽  
Ai DARIAH ◽  
Didiek Hadjar GOENADI

Summary Pseudomonas fluorescens PG7II.1, Flavobacterium sp. PG7II.2, and  Pseudomonas diminuta PG7II.9 have a potential to produce exopolysaccharide which help the  formation and stabilization of soil aggregate. These bacteria have been isolated from the rhizosphere of Saccharum officinarum.  Exopolysaccharide production in ATCC 14 liquid medium with sucrose was higher than that obtained from glucose, lactose, and 4-hydroxyphenil acetic acid       (4-HAA) as a carbon sources. Producing of exopolysaccharide from these bacteria were 8.04 (P. fluorescens PG7II.1), 2.0 (Flavo-bacterium sp. PG7II.2) and 1.82 mg/mL (P. diminuta PG7II.9). Aggregate Stability Index (ASI) of mineral soil material was 114 when inoculated by these isolates after 60 days incubation period at ambient temperature. The ASI value of inoculated mineral soil material significantly different with uninoculated. The optimum of bacterial suspension to increase aggregate stability of mineral soil material was 12.5% (v/w) consisted of 109 CFU per mL.  Ringkasan          Pseudomonas fluorescens PG7II.1, Flavobacterium sp. PG7II.2, dan Pseudomonas diminuta PG7II.9, memiliki potensi dalam menghasilkan eksopolisakarida untuk pem-bentukan dan kemantapan agregat tanah. Ketiga bakteri tersebut diisolasi dari rhizosfer Saccharum officinarum. Sukrosa merupakan sumber karbon terbaik untuk produksi eksopolisakarida di dalam medium cair ATCC 14 apabila dibandingkan dengan glukosa, laktosa, dan 4-hydroxyphenil acetic acid  (4-HAA). Eksopolisakarida yang dihasilkan dari ketiga bakteri tersebut masing-masing 8,04 (P. fluorescens PG7II.1); 2,0 (Flavobacterium sp. PG7II.2) dan 1,82 mg/mL (P. diminuta PG7II.9). Inokulasi ketiga isolat tersebut ke dalam bahan tanah mineral memberikan indeks stabilitas agregat (ASI) sebesar 114 setelah 60 hari inkubasi pada suhu ruang. Nilai indeks ini berbeda secara nyata apabila dibandingkan dengan bahan tanah mineral tanpa inokulan. Jumlah suspensi bakteri yang diperlukan untuk meningkatkan nilai indeks stabilitas agregat di dalam bahan tanah mineral secara optimum ialah 12,5% (v/b), dengan jumlah populasi bakteri 109 CFU   per mL. 


2018 ◽  
Vol 912 ◽  
pp. 207-211
Author(s):  
Fernando Storti ◽  
Marcos A.L. Nobre ◽  
Silvania Lanfredi

In this work was investigated the catalytic potential of a new heterogeneous catalyst of stoichiometry Ca0.5K0.5TiCu0.25O3 , with double perovskite structure, in the preparation of biodiesel via ethylic route. The catalyst was synthesized by the Polyol Modified method and characterized by X-ray diffraction, scanning electron microscopy, infrared spectroscopy and gas chromatography coupled to mass spectrometry. The investigation of the catalytic activity was carried out from transesterification reaction of commercial soybean oil with ethyl alcohol. Single-phase and crystalline powders related to the CaTiO3 phase were obtained with an average crystallite size at around 17.25 nm. The new catalyst showed high efficiency for the production of biodiesel via heterogeneous catalysis with a yield at around 97%, with reaction time of 8 hours at 78°C and 15% of catalyst mass in relation to the soybean oil mass.


Sign in / Sign up

Export Citation Format

Share Document