scholarly journals Analysis of Catalytic Potential of a New Heterogeneous Catalyst in the Preparation of Biodiesel

2018 ◽  
Vol 912 ◽  
pp. 207-211
Author(s):  
Fernando Storti ◽  
Marcos A.L. Nobre ◽  
Silvania Lanfredi

In this work was investigated the catalytic potential of a new heterogeneous catalyst of stoichiometry Ca0.5K0.5TiCu0.25O3 , with double perovskite structure, in the preparation of biodiesel via ethylic route. The catalyst was synthesized by the Polyol Modified method and characterized by X-ray diffraction, scanning electron microscopy, infrared spectroscopy and gas chromatography coupled to mass spectrometry. The investigation of the catalytic activity was carried out from transesterification reaction of commercial soybean oil with ethyl alcohol. Single-phase and crystalline powders related to the CaTiO3 phase were obtained with an average crystallite size at around 17.25 nm. The new catalyst showed high efficiency for the production of biodiesel via heterogeneous catalysis with a yield at around 97%, with reaction time of 8 hours at 78°C and 15% of catalyst mass in relation to the soybean oil mass.

2007 ◽  
Vol 21 (25) ◽  
pp. 1697-1714
Author(s):  
S. RAM ◽  
A. JANA ◽  
T. K. KUNDU

The phase formation and thermal-induced phase transformation are studied in BaTiO 3 nanoparticles. 2 h of heating a polymer precursor at 550°C in air formed a single phase BaTiO 3 of 15 nm average crystallite size D. The X-ray diffraction peaks are analyzed assuming a P nma orthorhombic (o) crystal structure of lattice parameters a = 0.6435 nm , b = 0.5306 nm , and c = 0.8854 nm . The lattice volume V = 0.3023 nm 3, with z = 4 formula units, yields a density ρ = 5.124 g/cm 3. This is a new polymorph in comparison to well-known P m3m tetragonal (t) structure, V = 0.0644 nm 3 or ρ = 6.016 g/cm 3 (z = 1). An o ↦ t transformation appears on heating at temperature as high as 650°C in air. A proposed model explains the transformation above a certain D value in terms of the Gibbs free energy. Unless heating above 750°C, the two phases coexist in a composite structure (D≤27 nm ), with as much residual o-phase trace as ~28 vol%. As a function of temperature both the phases decrease in the V values up to 0.2975 and 0.0643 nm3 at 750°C respectively (0.0650 nm3 at 650°C). This is an important parameter for designing useful ferroelectric and other properties in a hybrid composite structure.


2019 ◽  
Vol 290 ◽  
pp. 323-328 ◽  
Author(s):  
Nor Fadilah Chayed ◽  
Norlida Kamarulzaman ◽  
Nurhanna Badar ◽  
Kelimah Elong

Doping of the materials with other metals or transition metals will modify the properties of the nanomaterials. In this work, MgO and Cu doped MgO which are Mg0.95Cu0.05O and Mg0.90Cu0.10O nanomaterials are synthesized using a self-propagating combustion method. The samples are annealed at 900 °C for 24 hours. The phase and purity of the synthesized samples are studied using X-Ray Diffraction (XRD) and the result revealed that the samples are pure and single phase. The morphology and crystallite size of the pure samples are examined using Field Emission Scanning Electron Microscope (FESEM). The result shows polyhedral morphology with agglomeration of crystallite and average crystallite size of the samples is between 40 to 210 nm. The band gap obtained for MgO nanostructures is 6.38 eV which is lower than bulk MgO of 7.8 eV. The presence of Cu causes the narrowing the band gap energy of Mg0.95Cu0.05O and Mg0.90Cu0.10O samples to 4.28 eV and 3.35 eV respectively.


Author(s):  
Edgar S. Etz ◽  
Thomas D. Schroeder ◽  
Winnie Wong-Ng

We are investigating by Raman microprobe measurements the superconducting and related phases in the LnBa2Cu3O7-x (for x=0 to 1) system where yttrium has been replaced by several of the lanthanide (Ln = Nd,Sm,Eu,Ho,Er) elements. The aim is to relate the observed optical spectra (Raman and fluorescence) to the compositional and structural properties of these solids as part of comprehensive materials characterization. The results are correlated with the methods of synthesis, the processing techniques of these materials, and their superconducting properties. Of relevance is the substitutional chemistry of these isostructural systems, the differences in the spectra, and their microanalytical usefulness for the detection of impurity phases, and the assessment of compositional homogeneity. The Raman spectra of most of these compounds are well understood from accounts in the literature.The materials examined here are mostly ceramic powders prepared by conventional solid state reaction techniques. The bulk samples are of nominally single-phase composition as determined by x-ray diffraction.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


2021 ◽  
Vol 56 (19) ◽  
pp. 11237-11247 ◽  
Author(s):  
Johannes Pötschke ◽  
Manisha Dahal ◽  
Mathias Herrmann ◽  
Anne Vornberger ◽  
Björn Matthey ◽  
...  

AbstractDense (Hf, Ta, Nb, Ti, V)C- and (Ta, Nb, Ti, V, W)C-based high-entropy carbides (HEC) were produced by three different sintering techniques: gas pressure sintering/sinter–HIP at 1900 °C and 100 bar Ar, vacuum sintering at 2250 °C and 0.001 bar as well as SPS/FAST at 2000 °C and 60 MPa pressure. The relative density varied from 97.9 to 100%, with SPS producing 100% dense samples with both compositions. Grain size measurements showed that the substitution of Hf with W leads to an increase in the mean grain size of 5–10 times the size of the (Hf, Ta, Nb, Ti, V,)C samples. Vacuum-sintered samples showed uniform grain size distribution regardless of composition. EDS mapping revealed the formation of a solid solution with no intermetallic phases or element clustering. X-ray diffraction analysis showed the structure of mostly single-phase cubic high-entropy carbides. Hardness measurements revealed that (Hf, Ta, Nb, Ti, V)C samples possess higher hardness values than (Ta, Nb, Ti, V, W)C samples.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


2016 ◽  
Vol 74 (3) ◽  
pp. 663-671 ◽  
Author(s):  
A. E. Burgos ◽  
Tatiana A. Ribeiro-Santos ◽  
Rochel M. Lago

Hydrophobic cavities produced by cetyltrimethylammonium cation (CTA+) exchanged and trapped in the interlayer space of montmorillonite were used to remove the harmful hormone contaminant ethinyl estradiol (EE2) from water. X-ray diffraction, thermogravimetry/derivative thermogravimetry, elemental analysis (carbon, hydrogen, nitrogen), Fourier transform infrared, scanning electron microscopy/energy dispersive spectroscopy, Brunauer–Emmett–Teller and contact angle analyses showed that the intercalation of 9, 16 and 34 wt% CTA+ in the montmorillonite resulted in the d001 expansion from 1.37 to 1.58, 2.09 and 2.18 nm, respectively. EE2 adsorption experiments showed that the original clay montmorillonite does not remove EE2 from water whereas the intercalated composites showed high efficiency with adsorption capacities of 4.3, 8.8 and 7.3 mg g−1 for M9CTA+, M16CTA+ and M34CTA+, respectively. Moreover, experiments with montmorillonite simply impregnated with cetyltrimethylammonium bromide showed that the intercalation of CTA+ to form the hydrophobic cavity is very important for the adsorption properties. Simple solvent extraction can be used to remove the adsorbed EE2 without significant loss of CTA+, which allows the recovery and reuse of the adsorbent for at least five times.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


1995 ◽  
Vol 384 ◽  
Author(s):  
Randolph E. Treece ◽  
P. Dorsey ◽  
M. Rubinstein ◽  
J. M. Byers ◽  
J. S. Horwitz ◽  
...  

ABSTRACTThick films (0.6 and 2.0 μm) of the colossal magnetoresistance (CMR) material, La0.7Ca0.3MnO3 (LCMO), have been grown by pulsed laser deposition (PLD). The films were grown from single-phase LCMO targets in 100 mTorr 02 pressures and the material deposited on (100) LaAlO3 substrates at deposition temperatures of 800°C. The deposited films were characterized by X-ray diffraction (XRD), magnetic field-dependent resistivity, and Rutherford backscattering spectroscopy (RBS). The LCMO films were shown by XRD to adopt an orthorhombic structure. Brief post-deposition annealing led to ~50,000% and ~12,000% MR effect in the 0.6 μm and 2.0 μm films, respectively.


Sign in / Sign up

Export Citation Format

Share Document