ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L)

2016 ◽  
Vol 147 (2) ◽  
pp. 279-294 ◽  
Author(s):  
Saeidreza Azarabadi ◽  
Hamid Abdollahi ◽  
Mohamad Torabi ◽  
Zeynab Salehi ◽  
Jaber Nasiri
2013 ◽  
Vol 26 (8) ◽  
pp. 937-945 ◽  
Author(s):  
Sylvia Alquéres ◽  
Carlos Meneses ◽  
Luc Rouws ◽  
Michael Rothballer ◽  
Ivo Baldani ◽  
...  

Gluconacetobacter diazotrophicus is an aerobic diazotrophic plant-growth-promoting bacterium isolated from different gramineous plants. We showed that reactive oxygen species (ROS) were produced at early stages of rice root colonization, a typical plant defense response against pathogens. The transcription of the pathogen-related-10 gene of the jasmonic acid (JA) pathway but not of the PR-1 gene of the salicylic acid pathway was activated by the endophytic colonization of rice roots by G. diazotrophicus strain PAL5. Quantitative polymerase chain reaction analyses showed that, at early stages of colonization, the bacteria upregulated the transcript levels of ROS-detoxifying genes such as superoxide dismutase (SOD) and glutathione reductase (GR). To proof the role of ROS-scavenging enzymes in the colonization and interaction process, transposon insertion mutants of the SOD and GR genes of strain PAL5 were constructed. The SOD and GR mutants were unable to efficiently colonize the roots, indicated by the decrease of tightly root-associated bacterial cell counts and endophytic colonization and by fluorescence in situ hybridization analysis. Interestingly, the mutants did not induce the PR-10 of the JA-pathway, probably due to the inability of endophytic colonization. Thus, ROS-scavenging enzymes of G. diazotrophicus strain PAL5 play an important role in the endophytic colonization of rice plants.


2018 ◽  
Vol 45 (2) ◽  
pp. 70 ◽  
Author(s):  
Prachi Jain ◽  
Satish C. Bhatla

Nitric oxide (NO) signalling in plants is responsible for modulation of a variety of plant developmental processes. Depending on the tissue system, the signalling of NO-modulated biochemical responses majorly involves the processes of tyrosine nitration or S-nitrosylation of specific proteins/enzymes. It has further been observed that there is a significant impact of various biotic/abiotic stress conditions on the extent of tyrosine nitration and S-nitrosylation of various metabolic enzymes, which may act as a positive or negative modulator of the specific routes associated with adaptive mechanisms employed by plants under the said stress conditions. In addition to recent findings on the modulation of enzymes of primary metabolism by NO through these two biochemical mechanisms, a major mechanism for regulating the levels of reactive oxygen species (ROS) under stress conditions has also been found to be through tyrosine nitration or S-nitrosylation of ROS-scavenging enzymes. Recent investigations have further highlighted the differential manner in which the ROS-scavenging enzymes may be S-nitrosylated and tyrosine nitrated, with reference to their tissue distribution. Keeping in mind the very recent findings on these aspects, the present review has been prepared to provide an analytical view on the significance of protein tyrosine nitration and S-nitrosylation in plant development.


2005 ◽  
Vol 83 (12) ◽  
pp. 1556-1565 ◽  
Author(s):  
E Arenas-Ríos ◽  
M A León-Galván ◽  
P E Mercado ◽  
A Rosado

We studied the activities of reactive oxygen species (ROS) scavenging enzymes during epididymal spermatozoon maturation and storage in Corynorhinus mexicanus (G.M. Allen, 1916), a vespertilionid bat that stores spermatozoa in the epididymides for several months after regression of the testes. Depending on the phase of the epididymal reproductive cycle, two different patterns of antioxidant enzyme activities were observed in C. mexicanus. Catalase activity is clearly present in both caput and cauda epididymides throughout the entire annual reproductive cycle, being particularly high during the post-testicular phase of epididymal function. Superoxide dismutase (SOD) activity, present during the testicular phase of epididymal transport and maturation of spermatozoa, is almost completely absent or inhibited in both epididymal segments during the post-testicular epididymal storage period. GPx activity is low during the testicular phase of epididymal spermatozoon maturation and is high in both epididymal segments during the storage phase of epididymal function. From our results, we postulate that (i) the pattern of epididymal antioxidant enzyme activities in C. mexicanus is significantly different from the pattern that is proposed to be unique for mammals; (ii) epididymal function in these species of bats can be clearly divided into two phases, a testicular-dependent phase that is related to the spermatozoon maturation function of the epididymides and a testicular-independent phase that is related to the long-term spermatozoon storage function observed in these mammals; (iii) the study of the regulation of the redox potential of the microenvironment, associated with mammalian spermatozoa as they transit through the epididymides, must be particularly focused on the anatomical region where ROS generation scavenging and spermatozoon maturation storage processes take place.


Plant Omics ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 220-232 ◽  
Author(s):  
Md. Motiar Rohman ◽  
◽  
Shahnewaz Begum ◽  
M.Z.A. Talukder ◽  
Afsana Hoque Akhi ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jiangying Wang ◽  
Bin Wu ◽  
Hengfu Yin ◽  
Zhengqi Fan ◽  
Xinlei Li ◽  
...  

Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized anAPX(CaAPX) gene fromCamellia azalea. Quantitative real-time PCR (qRT-PCR) analysis showed thatCaAPXwas expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated withCaAPXexpression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes includingCu/Zn-SOD,CAT,DHAR, andMDHAR, and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role ofCaAPXto orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related toCaAPXexpression and provides insights to breed crops with high temperature tolerances.


1999 ◽  
Vol 247 (2) ◽  
pp. 484-494 ◽  
Author(s):  
Heike Steiling ◽  
Barbara Munz ◽  
Sabine Werner ◽  
Maria Brauchle

Sign in / Sign up

Export Citation Format

Share Document