Mechanical Properties and Deformation and Failure Characteristics of Surrounding Rocks of Tunnels Excavated in Soft Rocks

2017 ◽  
Vol 35 (6) ◽  
pp. 2789-2801 ◽  
Author(s):  
Lei Han ◽  
Yanyan Zuo ◽  
Zeng Guo ◽  
Limin Zhang ◽  
Xiangmin Chen ◽  
...  
2021 ◽  
Vol 8 (7) ◽  
pp. 202178
Author(s):  
Senlin Luo ◽  
Hongkui Ge ◽  
Jianbo Wang ◽  
Wei Zhou ◽  
Yinghao Shen ◽  
...  

The conglomerate reservoir is rich in oil and gas reserves; however, the gravel's mechanical properties and laws are difficult to gain through laboratory experiments, which furthermore constrain the hydraulic fracturing design. To analyse the failure law of conglomerate, we simulated the uniaxial compression test based on discrete element software PFC2D and analysed the effect of different cementation strength, gravel content and gravel geometry on the rock deformation and failure characteristics. Results show that (i) as the cementation strength decreases, the compressive strength and elasticity modulus both reduce clearly, while the crack shapes get more complex and the critical value is 0.3; (ii) as the gravel content increases, the conglomerate strength first decreases then increases under the influences of cracks bypassing gravels; cementation strength and gravel content of the conglomerate both contribute to the increase in local additional stress, which leads to a series of changes in crack shapes and mechanical properties of the conglomerate. Based on the above research, the conglomerate strength and crack shapes after failure are relatively complex due to the common influence of cementation strength and gravel content. The gravel edge crack caused by stress concentration is the micro-mechanism that affects the conglomerate mechanical properties.


Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 779 ◽  
Author(s):  
Emanuele Parodi ◽  
Gerrit Peters ◽  
Leon Govaert

The effect of processing conditions during injection on the structure formation and mechanical properties of injection molded polyamide 6 samples was investigated in detail. A large effect of the mold temperature on the crystallographic properties was observed. Also the the effect of pressure and shear flow was taken in to consideration and analysed. The yield and failure kinetics, including time-to-failure, were studied by performing tensile and creep tests at several test temperatures and relative humidities. As far as mechanical properties are concerned, a strong influence of temperature and relative humidity on the yield stress and time-to-failure was found. A semi-empirical model, able to describe yield and failure kinetics, was applied to the experimental results and related to the crystalline phase present in the sample. In agreement with findings in the literature it is observed that for high mold temperatures the sample morphology is more stable with respect to humidity and temperature than in case of low mold temperatures and this effects could be successfully captured by the model. The samples molded at low temperatures showed, during mechanical testing, a strong evolution of the crystallographic properties when exposed to high testing temperature and high relative humidity, i.e., an increase of crystallinity or a crystal phase transition. This makes a full description of the mechanical behavior rather complicated.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


1981 ◽  
Vol 1981 (305) ◽  
pp. 97-110
Author(s):  
Toshihisa ADACHI ◽  
Masayuki HAYASHI

2012 ◽  
Vol 446-449 ◽  
pp. 418-423
Author(s):  
Ming Xu ◽  
Zhu Peng ◽  
Meng Jing Chen ◽  
Zhong Fan Chen

Based on the experiment of five full-scale small-sized fly ash hollow block walls under low-cycle reversed load, the influence of aspect ratio, common horizontal reinforcement, size of structural column section to the loading process, failure characteristics, cracking load, ultimate load, deformation, ductility, stiffness and energy dissipation of the walls was studied. Simultaneously the mechanical properties and work mechanism of the small-sized fly ash hollow block wall has been analyzed.


AIP Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 075222 ◽  
Author(s):  
Lingfan Zhang ◽  
Duoxing Yang ◽  
Zhonghui Chen

2019 ◽  
Vol 16 (5) ◽  
pp. 862-874
Author(s):  
Yang Song ◽  
Heping Wang ◽  
Meng Ren

Abstract To study more fully the characteristic law of deformation and failure of tuff jointed rock mass of prefabricated parallel discontinuous joint test specimens, the uniaxial compression test was used. The stress–strain curve, peak intensity, deformation parameters, energy characteristics, etc., of the rock test specimens were systematically studied under different combinations of joint dip angle and joint spacing. The research found that: (1) during the failure process of tuff, the peak intensity and elastic modulus followed a U-shaped change pattern and the minimum value was reached when α = 60°; (2) the fracture modes of test specimens with different joint dip angles were different. When α = 30° and 45°, failure characteristics were mixed modes of tensile or tensile shear failure. When α = 60°, failure characteristics were shear. At α = 75°, the failure characteristic was tensile shear failure. (3) The absorbed and dissipated energy of the rock increased nonlinearly at each stage of deformation. (4) We quantified rock energy damage through a correlation between dissipated energy and absorbed energy of the rock in the process of energy evolution, and obtained an evolution of the relationship between the dissipated energy ratio, crack dip angle and crack spacing. Based on different fracture distribution methods and according to the strain equivalence principle, the constitutive equation of the pre-peak rock damage was obtained.


Sign in / Sign up

Export Citation Format

Share Document