scholarly journals The importance of allochthonous organic matter quality when investigating pulse disturbance events in freshwater lakes: a mesocosm experiment

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Maria Calderó-Pascual ◽  
Dilvin Yıldız ◽  
Gülce Yalçın ◽  
Melisa Metin ◽  
Sinem Yetim ◽  
...  

AbstractExtreme precipitation is occurring with greater frequency and intensity as a result of climate change. Such events boost the transport of allochthonous organic matter (allo-OM) to freshwater ecosystems, yet little is known about the impacts on dissolved organic matter (DOM) quality and seston elemental stoichiometry, especially for lakes in warm climates. A mesocosm experiment located in a Turkish freshwater lake was designed to simulate a pulse event leading to increased inputs of allo-OM by examining the individual effects of increasing water colour (HuminFeed®, HF), the direct effects of the extra energetic inputs (alder tree leaf leachate, L), and the interactions of the single treatment effects (combination of both sources, HFL), along with a comparison with unmanipulated controls. Changes in the DOM quality and nutrient stoichiometry of the allo-OM treatment additions was examined over the course of the experiments. Results indicated that there was an increase of high recalcitrant DOM components in the HF treatment, in contrast to an increase in less aromatic microbially derived molecules for the L treatment. Unexpectedly, seston C:P ratios remained below a severe P-limiting threshold for plankton growth and showed the same temporal pattern in all mesocosms. In contrast, seston N:P ratios differed significantly between treatments, with the L treatment reducing P-limiting conditions, whilst the HF treatment increased them. The effects of the combined HFL treatment indicated an additive type of interaction and chlorophyll-a was highest in the HFL treatment. Our results demonstrate that accounting for the optical and stoichiometric properties of experimental allo-OM treatments is crucial to improve the capacity to explain extrapolated conclusions regarding the effects of climate driven flooding on freshwater ecosystems in response to global climate change. Graphical abstract

2021 ◽  
Author(s):  
Marguerite A. Xenopoulos ◽  
Rebecca T. Barnes ◽  
Kyle S. Boodoo ◽  
David Butman ◽  
Núria Catalán ◽  
...  

AbstractDissolved organic matter (DOM) is recognized for its importance in freshwater ecosystems, but historical reliance on DOM quantity rather than indicators of DOM composition has led to an incomplete understanding of DOM and an underestimation of its role and importance in biogeochemical processes. A single sample of DOM can be composed of tens of thousands of distinct molecules. Each of these unique DOM molecules has their own chemical properties and reactivity or role in the environment. Human activities can modify DOM composition and recent research has uncovered distinct DOM pools laced with human markers and footprints. Here we review how land use change, climate change, nutrient pollution, browning, wildfires, and dams can change DOM composition which in turn will affect internal processing of freshwater DOM. We then describe how human-modified DOM can affect biogeochemical processes. Drought, wildfires, cultivated land use, eutrophication, climate change driven permafrost thaw, and other human stressors can shift the composition of DOM in freshwater ecosystems increasing the relative contribution of microbial-like and aliphatic components. In contrast, increases in precipitation may shift DOM towards more relatively humic-rich, allochthonous forms of DOM. These shifts in DOM pools will likely have highly contrasting effects on carbon outgassing and burial, nutrient cycles, ecosystem metabolism, metal toxicity, and the treatments needed to produce clean drinking water. A deeper understanding of the links between the chemical properties of DOM and biogeochemical dynamics can help to address important future environmental issues, such as the transfer of organic contaminants through food webs, alterations to nitrogen cycling, impacts on drinking water quality, and biogeochemical effects of global climate change.


2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 536
Author(s):  
Marinos Markou ◽  
Anastasios Michailidis ◽  
Efstratios Loizou ◽  
Stefanos A. Nastis ◽  
Dimitra Lazaridou ◽  
...  

Agriculture is highly dependent on climate change, and Cyprus especially is experiencing its impacts on agricultural production to a greater extent, mainly due to its geographical location. The adaptation of farming to the effects of global climate change may lead to the maximization of agricultural production, which is an important and desirable improvement. The main aim of this paper is to rank and quantify the impacts of climate change on the agricultural sector of Cyprus, through a multi-round Delphi survey seeking a consensus agreement in a group of experts. A multidisciplinary group of 20 experts stated their willingness-to-pay for various impacts of climate change. By applying this method, the individual impacts of climate change on crop production and water resources were brought into the modeling effort on equal footing with cost values. The final cost impact estimate represents the total estimated cost of climate change in the agricultural sector. According to the results, this cost reaches EUR 25.08 million annually for the agricultural sector, and EUR 366.48 million for the whole country. Therefore, it is expected that in the seven-year programming period 2014–2020 the total cost of climate change on agriculture ranges from EUR 176 to EUR 2565 million. The most significant impacts are due to the increasing level of CO2 in the atmosphere and the burden of biodiversity and ecosystems.


2011 ◽  
Vol 62 (9) ◽  
pp. 984 ◽  
Author(s):  
Janice M. Lough ◽  
Alistair J. Hobday

The consequences of human activities increasing concentrations of atmospheric greenhouse gases are already being felt in marine and terrestrial environments. More energy has been trapped in the global climate system, resulting in warming of land and sea temperatures. About 30% of the extra atmospheric carbon dioxide has been absorbed by the oceans, increasing their acidity. Thermal expansion and some melting of land-based ice have caused sea level to rise. Significant climate changes have now been observed across Australia and its coastal seas. The clearest signal is the warming of air and sea temperatures and the rates of warming have accelerated since the mid-20th century. Ocean warming has been higher than the global average around Australia, especially off south-eastern Australia. Changes in Australia’s hydrological regime are more difficult to differentiate from the high natural inter-annual variability. Recent trends towards drier winters in south-western Western Australia and part of southern Australia appear, however, to be largely attributable to human-induced climate change. Even without significant changes in average rainfall, warmer temperatures increase evaporative losses, enhance the intensity of recent droughts and reduce river flows. Sustained and coordinated monitoring of the physical environment, especially lacking for Australia’s freshwater ecosystems, is important to assess the magnitude and biological consequences of ongoing changes.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiangnan Li ◽  
Dong Jiang ◽  
Fulai Liu

Abstract Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l−1) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease the dietary availability of minerals from wheat crops. Breeding wheat cultivars possessing higher ability of mineral uptake at reduced xylem flux in exposure to climate change should be a target.


Author(s):  
Jialin Chi ◽  
Chonghao Jia ◽  
Wenjun Zhang ◽  
Christine V Putnis ◽  
Lijun Wang

The stability of soil organic matter (SOM) plays a key role in controlling global climate change as soil stores a large amount of organic carbon, compared with other ecological systems....


Sign in / Sign up

Export Citation Format

Share Document