Effects of fertilizer-based culture media on the production of exocellular polysaccharides and cellular superoxide dismutase by Phaeodactylum tricornutum (Bohlin)

2006 ◽  
Vol 19 (1) ◽  
pp. 33-41 ◽  
Author(s):  
María A. Guzmán-Murillo ◽  
Claudia C. López-Bolaños ◽  
Tania Ledesma-Verdejo ◽  
Gabriela Roldan-Libenson ◽  
Marco A. Cadena-Roa ◽  
...  
1992 ◽  
Vol 288 (2) ◽  
pp. 451-456 ◽  
Author(s):  
A Edlund ◽  
T Edlund ◽  
K Hjalmarsson ◽  
S L Marklund ◽  
J Sandström ◽  
...  

The secretory tetrameric extracellular superoxide dismutase (EC-SOD) is the only glycosylated SOD isoenzyme. The importance of the carbohydrate moiety for the properties of the enzyme is unknown. An expression vector defining nonglycosylated EC-SOD (ngEC-SOD) was constructed by mutagenesis of the codon for Asn-89 into a codon for Gln. The vector was transfected into Chinese hamster ovary DXB-11 cells and ngEC-SOD was isolated to 70% purity from the culture media of selected clones. The absence of glycosylation was established by the lack of affinity for various lectins, the absence of staining with the periodic acid-Schiff reagent, the change in mobility and composition of the tryptic peptide containing the mutated glycosylation site, and the reduction in apparent molecular mass upon SDS/PAGE and size-exclusion chromatography. The tetrameric state was retained. The heparin affinity, a fundamental and distinguishing property of EC-SOD, was found to be slightly increased. The enzymic activity was essentially retained. The major difference from native glycosylated enzyme in physical properties was a marked reduction in solubility. Like glycosylated EC-SOD, ngEC-SOD was, after intravenous injection into rabbits, rapidly sequestered by the vessel endothelium, and was promptly released into plasma after injection of heparin. The only difference from glycosylated EC-SOD in this behaviour, was a slightly more rapid elimination of the mutant enzyme from the vasculature. It is concluded that no specific biological role for the EC-SOD carbohydrate moiety could be revealed.


2014 ◽  
Vol 11 (12) ◽  
pp. 17675-17706 ◽  
Author(s):  
W. Li ◽  
K. Gao ◽  
J. Beardall

Abstract. It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 μatm, HC) or ambient (390 μatm, LC) levels of CO2 with replete (110 μmol L-1, HN) or reduced (10 μmol L-1, LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (280–400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by the OA under multiple stressors.


1979 ◽  
Author(s):  
L. P. Raymond

A system for the intensive cultivation of the marine diatom Phaeodactylum tricornutum is described and evaluated. Unique features of the system include: (a) the incorporation of solar heat collection device which transmits only photosynthetically active radiation (PAR) to the growing culture; (b) the formulation of a new seawater enrichment medium that promotes physiological responses not previously observed in culture; and (c) the use of a foam fractionation device which separates microalgae, from the culture media, adds CO2-enriched air, and/or simultaneously recirculates the growing culture in shallow layers through an interconnecting series of hemicylindrical channels. The outdoor system demonstrated that very high ash-free dry weight yields of Phaeodactylum tricornutum are produced, a result of high photosynthetic efficiency. Actual yield over an eight-day period was equivalent to 39.57 ash-free dry tons/acre-year. Observed photosynthetic efficiency, based on photosynthetically active radiation incident upon the external surface of the system, is 13.1 percent, nearly three times the limit previously considered economically practical. The data indicate that greater yields may be expected using this system at locations receiveing higher insolation. A conservative projection is that 80 ash-free dry tons/acre-year will be realized in land regions receiveing 3 × 1010 Btu/acre-year total solar radiation. It is concluded that this system clearly warrants further investigation to determine its capacity to produce large and economical quantities of algal biomass for use as potential petroleum-fuel substitutes. The development of a comprehensive and systematic bio-engineering program is recommended to upgrade and evaluate the system to its full potential.


Author(s):  
Cemil İşlek ◽  
Bengü Türkyılmaz Ünal ◽  
Sinan Aydın

The amount of secondary metabolites can be increased with different elicitor applications in vitro. It has been determined that zinc sulphate significantly increases the amount of capsaicin in the cell culture of red hot pepper. It is important to determine how the metal applied as elicitor will have an effect on plant metabolism. In the study, it was aimed to determine the effects of zinc sulphate (ZnSO4) applied to the cell suspension cultures of pepper seeds at different concentrations (0.1 M, 0.2 M, 0.4 M) and for periods (24, 48, 72 hours) on the total protein and phenolic substance amounts, and superoxide dismutase-peroxidase enzyme activities of pepper calluses. It was observed that the amount of protein increased, superoxide dismutase and peroxidase enzyme activities decreased, and the total amount of phenolic substance increased especially in 72 hours of treatment where zinc was applied as elicitor. These results show that ZnSO4 can be used as an abiotic elicitor in plant cell culture media.


2003 ◽  
Vol 15 (1) ◽  
pp. 19 ◽  
Author(s):  
Fiammetta Berlinguer ◽  
Sergio Ledda ◽  
Irma Rosati ◽  
Luisa Bogliolo ◽  
Giovanni Leoni ◽  
...  

This study evaluated the effects of superoxide dismutase (SOD) on viability and acrosome integrity of European mouflon spermatozoa after cryopreservation and on the fertilization rates of sheep oocytes after IVF or intracytoplasmatic sperm injection (ICSI). Frozen semen was thawed and washed with synthetic oviduct fluid supplemented with 0.6% bovine serum albumin. After centrifugation, the spermatozoa pellet was split into two culture systems: (i) without SOD; and (ii) in the presence of 1500 IU mL−1 SOD. Sperm viability and acrosome integrity were evaluated simultaneously, immediately after thawing and after 3, 6 and 9 h of culture (5% CO2, 39°C, 90% humidity), by incubating sperm with propidium iodide and fluorescein isothiocyanate-labelled Pisum sativum agglutinin. At the same time, sperm were assessed for motility using a standard scoring system (independent operators’ observation of sperm) that graded degree of motility (i.e. 1 = immotile to 10 = maximum motility, as observed at the moment of thawing). For IVF, frozen–thawed semen derived from the two culture systems was placed in culture together with in vitro-matured sheep oocytes. For ICSI, semen derived from the same culture systems as that for IVF was used, and incubated for 1 h under standard conditions. The results showed a marked difference (P < 0.01) between the percentages of live spermatozoa in medium with SOD and those obtained in medium alone, after 3, 6 and 9 h of culture. The percentages of intact acrosome spermatozoa were higher in medium with SOD after 6 h (P = 0.05) of culture. Spermatozoa motility decreased significantly in SOD containing medium at 3 and 6 h of culture compared with motility in control medium. Fertilization rates were significantly lower in medium with SOD than in medium alone, whereas in the ICSI system fertilization rates were significantly higher in the presence of SOD. The results indicate that the addition of SOD to the culture media enhances the viability rates and the acrosome integrity of cryopreserved mouflon spermatozoa.


Author(s):  
M. F. Turner

The status of our knowledge of the organic nutrition of algae has been summarized in tabular form from time to time. Albritton (1954) listed a mere 14 taxa of pigmented algae as having been examined from this point of view. Eight of the 14 were species of Euglena and only ‘Nitzschia dosterium' (= Phaeodactylum tricornutum Bohlin) was marine. This paucity of information reflected in part the lack of suitable denned culture media as prerequisites of nutritional experiments. By the early 1960s this lack had been overcome to a large extent (see, for example, Provasoli, McLaughlin & Droop, 1957) and Thomas (1968) could list some 280 species, both freshwater and marine, on which nutritional work in terms of organic requirements had been undertaken. The vitamin requirements (or lack of them) of most of these species were known, but knowledge of their ability to grow in the dark on organic carbon sources and of their ability to utilize different nitrogen sources in the light was fragmentary. It still is, despite the fact that some of the gaps in Thomas's tables have been subsequently filled and the list of species has been extended.


2021 ◽  
Vol 22 (8) ◽  
pp. 4155
Author(s):  
Chika Takashima ◽  
Yasuhiro Kosuge ◽  
Masahisa Inoue ◽  
Shin-Ichi Ono ◽  
Eiichi Tokuda

Superoxide dismutase 1 (SOD1) is a metalloenzyme with high structural stability, but a lack of Cu and Zn ions decreases its stability and enhances the likelihood of misfolding, which is a pathological hallmark of amyotrophic lateral sclerosis (ALS). A growing body of evidence has demonstrated that misfolded SOD1 has prion-like properties such as transmissibility between cells and intracellular propagation of misfolding of natively folded SOD1. Recently, we found that SOD1 is misfolded in the cerebrospinal fluid of sporadic ALS patients, providing a route by which misfolded SOD1 spreads via the extracellular environment of the central nervous system. Unlike intracellular misfolded SOD1, it is unknown which extracellular misfolded species is most relevant to prion-like properties. Here, we determined a conformational feature of extracellular misfolded SOD1 that is linked to prion-like properties. Using culture media from motor neuron-like cells, NSC-34, extracellular misfolded wild-type, and four ALS-causing SOD1 mutants were characterized as a metal-free, disulfide oxidized form of SOD1 (apo-SOD1S-S). Extracellular misfolded apo-SOD1S-S exhibited cell-to-cell transmission from the culture medium to recipient cells as well as intracellular propagation of SOD1 misfolding in recipient cells. Furthermore, culture medium containing misfolded apo-SOD1S-S exerted cytotoxicity to motor neuron-like cells, which was blocked by removal of misfolded apo-SOD1S-S from the medium. We conclude that misfolded apo-SOD1S-S is a primary extracellular species that is linked to prion-like properties.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
Douglas R. Keene ◽  
Gregory P. Lunstrum ◽  
Patricia Rousselle ◽  
Robert E. Burgeson

A mouse monoclonal antibody produced from collagenase digests of human amnion was used by LM and TEM to study the distribution and ultrastructural features of an antigen present in epithelial tissues and in cultured human keratinocytes, and by immunoaffinity chromatography to partially purify the antigen from keratinocyte cell culture media.By immunofluorescence microscopy, the antigen displays a tissue distribution similar to type VII collagen; positive staining of the epithelial basement membrane is seen in skin, oral mucosa, trachea, esophagus, cornea, amnion and lung. Images from rotary shadowed preparations isolated by affinity chromatography demonstrate a population of rod-like molecules 107 nm in length, having pronounced globular domains at each end. Polyacrylamide gel electrophoresis suggests that the size of this molecule is approximately 440kDa, and that it is composed of three nonidentical chains disulfide bonded together.


Sign in / Sign up

Export Citation Format

Share Document