scholarly journals The SeaCoRe system for large scale kelp aquaculture: a plug-and-play, compatible, open-source system for the propagation and transport of clonal gametophyte cultures

Author(s):  
Alexander P. J. Ebbing ◽  
Gregory S. Fivash ◽  
Ronald Pierik ◽  
Tjeerd J. Bouma ◽  
Jacco C. Kromkamp ◽  
...  

AbstractThe future of large-scale kelp aquaculture is standing at a crossroad, with the diverging paths being characterized by two fundamentally different cultivation methods that differ on how well gametophyte reproduction can be controlled. The cultivation method that does not directly control gametophyte reproduction is more widely utilized at the moment, but interest in better controlling gametophyte reproduction is growing steadily. Here, we validate a bioreactor system that overcomes a number of implementation challenges for this controlled reproductive method, expanding the possibility of clonal gametophyte cultivation outside of expensive laboratory settings. The main goals of this system include (i) the maintenance of clean gametophyte clonal cultures in non-sterile environments over prolonged periods of time, (ii) the production of large numbers of juvenile sporophytes, and (iii) effective transportation of gametophytes and sporophytes. The “SeaCoRe system” consists out of three parts that correspond to these three challenges: (1) clone-reactors, (2) a clone-inducer, and (3) a transporter. The validation of the system showed that delayed Saccharina latissima and Alaria esculenta gametophytes can grow reliably for 75 days in the clone-reactors. Initial gametophyte densities of 0.4 mg DW and 0.6 mg DW gametophtyes mL−1 were optimal for S. latissima and A. esculenta, resulting in reproductive successes of 604 and 422 sporophytes mL−1, respectively. Lastly, gametophyte transport was simulated, with high reproductive success still achieved within 19 days in ~ 20 °C environments. The SeaCoRe system helps unlock the full potential of large-scale kelp cultivation using multiannual delayed clonal.

2013 ◽  
Vol 7 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Anne Reichardt ◽  
Bianca Polchow ◽  
Mehdi Shakibaei ◽  
Wolfgang Henrich ◽  
Roland Hetzer ◽  
...  

Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions.


1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.


2014 ◽  
Vol 59 (1) ◽  
pp. 79-92
Author(s):  
Alexander Becker

Wie erlebt der Hörer Jazz? Bei dieser Frage geht es unter anderem um die Art und Weise, wie Jazz die Zeit des Hörens gestaltet. Ein an klassischer Musik geschultes Ohr erwartet von musikalischer Zeitgestaltung, den zeitlichen Rahmen, der durch Anfang und Ende gesetzt ist, von innen heraus zu strukturieren und neu zu konstituieren. Doch das ist keine Erwartung, die dem Jazz gerecht wird. Im Jazz wird der Moment nicht im Hinblick auf ein Ziel gestaltet, das von einer übergeordneten Struktur bereitgestellt wird, sondern so, dass er den Bewegungsimpuls zum nächsten Moment weiterträgt. Wie wirkt sich dieses Prinzip der Zeitgestaltung auf die musikalische Form im Großen aus? Der Aufsatz untersucht diese Frage anhand von Beispielen, an denen sich der Weg der Transformation von einer klassischen zu einer dem Jazz angemessenen Form gut nachverfolgen lässt.<br><br>How do listeners experience Jazz? This is a question also about how Jazz music organizes the listening time. A classically educated listener expects a piece of music to structure, unify and thereby re-constitute the externally given time frame. Such an expectation is foreign to Jazz music which doesn’t relate the moment to a goal provided by a large scale structure. Rather, one moment is carried on to the next, preserving the stimulus potentially ad infinitum. How does such an organization of time affect the large scale form? The paper tries to answer this question by analyzing two examples which permit to trace the transformation of a classical form into a form germane to Jazz music.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-21
Author(s):  
He Wang ◽  
Nicoleta Cucu Laurenciu ◽  
Yande Jiang ◽  
Sorin Cotofana

Design and implementation of artificial neuromorphic systems able to provide brain akin computation and/or bio-compatible interfacing ability are crucial for understanding the human brain’s complex functionality and unleashing brain-inspired computation’s full potential. To this end, the realization of energy-efficient, low-area, and bio-compatible artificial synapses, which sustain the signal transmission between neurons, is of particular interest for any large-scale neuromorphic system. Graphene is a prime candidate material with excellent electronic properties, atomic dimensions, and low-energy envelope perspectives, which was already proven effective for logic gates implementations. Furthermore, distinct from any other materials used in current artificial synapse implementations, graphene is biocompatible, which offers perspectives for neural interfaces. In view of this, we investigate the feasibility of graphene-based synapses to emulate various synaptic plasticity behaviors and look into their potential area and energy consumption for large-scale implementations. In this article, we propose a generic graphene-based synapse structure, which can emulate the fundamental synaptic functionalities, i.e., Spike-Timing-Dependent Plasticity (STDP) and Long-Term Plasticity . Additionally, the graphene synapse is programable by means of back-gate bias voltage and can exhibit both excitatory or inhibitory behavior. We investigate its capability to obtain different potentiation/depression time scale for STDP with identical synaptic weight change amplitude when the input spike duration varies. Our simulation results, for various synaptic plasticities, indicate that a maximum 30% synaptic weight change and potentiation/depression time scale range from [-1.5 ms, 1.1 ms to [-32.2 ms, 24.1 ms] are achievable. We further explore the effect of our proposal at the Spiking Neural Network (SNN) level by performing NEST-based simulations of a small SNN implemented with 5 leaky-integrate-and-fire neurons connected via graphene-based synapses. Our experiments indicate that the number of SNN firing events exhibits a strong connection with the synaptic plasticity type, and monotonously varies with respect to the input spike frequency. Moreover, for graphene-based Hebbian STDP and spike duration of 20ms we obtain an SNN behavior relatively similar with the one provided by the same SNN with biological STDP. The proposed graphene-based synapse requires a small area (max. 30 nm 2 ), operates at low voltage (200 mV), and can emulate various plasticity types, which makes it an outstanding candidate for implementing large-scale brain-inspired computation systems.


2019 ◽  
Vol 867 ◽  
pp. 661-690 ◽  
Author(s):  
Oleg Zikanov ◽  
Dmitry Krasnov ◽  
Thomas Boeck ◽  
Semion Sukoriansky

Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky et al. (Exp. Fluids, vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.


2021 ◽  
Vol 13 (10) ◽  
pp. 1883
Author(s):  
Yuma Morisaki ◽  
Makoto Fujiu ◽  
Ryoichi Furuta ◽  
Junichi Takayama

In Japan, older adults account for the highest proportion of the population of any country in the world. When large-scale earthquake disasters strike, large numbers of casualties are known to particularly occur among seniors. Many are physically or mentally vulnerable and require assistance during the different phases of disaster response, including rescue, evacuation, and living in an evacuation center. However, the growing number of older adults has made it difficult, after a disaster, to quickly gather information on their locations and assess their needs. The authors are developing a proposal to enable vulnerable people to signal their location and needs in the aftermath of a disaster to response teams by deploying radar reflectors that can be detected in synthetic aperture radar (SAR) satellite imagery. The purpose of this study was to develop a radar reflector kit that seniors could easily assemble in order to make this proposal feasible in practice. Three versions of the reflector were tested for detectability, and a sample of older adults was asked to assemble the kits and provide feedback regarding problems they encountered and regarding their interest in using the reflectors in the event of a large-scale disaster.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haron M. Abdel-Raziq ◽  
Daniel M. Palmer ◽  
Phoebe A. Koenig ◽  
Alyosha C. Molnar ◽  
Kirstin H. Petersen

AbstractIn digital agriculture, large-scale data acquisition and analysis can improve farm management by allowing growers to constantly monitor the state of a field. Deploying large autonomous robot teams to navigate and monitor cluttered environments, however, is difficult and costly. Here, we present methods that would allow us to leverage managed colonies of honey bees equipped with miniature flight recorders to monitor orchard pollination activity. Tracking honey bee flights can inform estimates of crop pollination, allowing growers to improve yield and resource allocation. Honey bees are adept at maneuvering complex environments and collectively pool information about nectar and pollen sources through thousands of daily flights. Additionally, colonies are present in orchards before and during bloom for many crops, as growers often rent hives to ensure successful pollination. We characterize existing Angle-Sensitive Pixels (ASPs) for use in flight recorders and calculate memory and resolution trade-offs. We further integrate ASP data into a colony foraging simulator and show how large numbers of flights refine system accuracy, using methods from robotic mapping literature. Our results indicate promising potential for such agricultural monitoring, where we leverage the superiority of social insects to sense the physical world, while providing data acquisition on par with explicitly engineered systems.


2004 ◽  
Vol 31 (3) ◽  
pp. 283 ◽  
Author(s):  
Nick Gales ◽  
Robert D. McCauley ◽  
Janet Lanyon ◽  
Dave Holley

The third in a series of five-yearly aerial surveys for dugongs in Shark Bay, Ningaloo Reef and Exmouth Gulf was conducted in July 1999. The first two surveys provided evidence of an apparently stable population of dugongs, with ~1000 animals in each of Exmouth Gulf and Ningaloo Reef, and 10 000 in Shark Bay. We report estimates of less than 200 for each of Exmouth Gulf and Ningaloo Reef and ~14 000 for Shark Bay. This is an apparent overall increase in the dugong population over this whole region, but with a distributional shift of animals to the south. The most plausible hypothesis to account for a large component of this apparent population shift is that animals in Exmouth Gulf and Ningaloo Reef moved to Shark Bay, most likely after Tropical Cyclone Vance impacted available dugong forage in the northern habitat. Bias associated with survey estimate methodology, and normal changes in population demographics may also have contributed to the change. The movement of large numbers of dugongs over the scale we suggest has important management implications. First, such habitat-driven shifts in regional abundance will need to be incorporated in assessing the effectiveness of marine protected areas that aim to protect dugongs and their habitat. Second, in circumstances where aerial surveys are used to estimate relative trends in abundance of dugongs, animal movements of the type we propose could lead to errors in interpretation.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Myung Gwan Hahm ◽  
Young-Kyun Kwon ◽  
Ahmed Busnaina ◽  
Yung Joon Jung

Due to their unique one-dimensional nanostructure along with excellent mechanical, electrical, and optical properties, carbon nanotubes (CNTs) become a promising material for diverse nanotechnology applications. However, large-scale and structure controlled synthesis of CNTs still have many difficulties due to the lack of understanding of the fundamental growth mechanism of CNTs, as well as the difficulty of controlling atomic-scale physical and chemical reactions during the nanotube growth process. Especially, controlling the number of graphene wall, diameter, and chirality of CNTs are the most important issues that need to be solved to harness the full potential of CNTs. Here we report the large-scale selective synthesis of vertically aligned single walled carbon nanotubes (SWNTs) and double walled carbon nanotubes (DWNTs) by controlling the size of catalyst nanoparticles in the highly effective oxygen assisted thermal chemical vapor deposition (CVD) process. We also demonstrate a simple but powerful strategy for synthesizing ultrahigh density and diameter selected vertically aligned SWNTs through the precise control of carbon flow during a thermal CVD process.


e-mentor ◽  
2021 ◽  
Vol 90 (3) ◽  
pp. 64-72
Author(s):  
Robert Pawlak ◽  

The aim of this article is to analyze the challenges and success factors on organizations’ path to agile transformation, as frequently discussed in the literature and encountered in business practice. The research conducted proved that large-scale agile transformations require a dedicated approach with set of tools and best practices in place. The implementation challenges and barriers have been categorized into method-, organization-, culture- and technology-oriented groups. As a result of an in-depth analysis carried on for the purpose of this paper, a dedicated methodology of agile transformation has been proposed to ease the implementation process.


Sign in / Sign up

Export Citation Format

Share Document