X-ray diffraction and compositional studies of AgInS2 thin films obtained by spray pyrolysis

2008 ◽  
Vol 43 (21) ◽  
pp. 6848-6852 ◽  
Author(s):  
M. Calixto-Rodriguez ◽  
A. Tiburcio-Silver ◽  
A. Sanchez-Juarez ◽  
M. E. Calixto
1996 ◽  
Vol 441 ◽  
Author(s):  
D. R. Acosta ◽  
E. Zironi ◽  
W. Estrada ◽  
E. Montoya

AbstractFluorine doped tin oxide thin films were prepared from solutions with high fluorine contents using the spray pyrolysis technique; the resulting films were studied by electron and X-ray diffraction methods; the resonant nuclear reaction (RNR) method was used to determine the final concentration of fluorine atoms in our films for different doping levels. Also, electrical and optical properties of SnO2:F films were measured and correlated with deposition and structural parameters obtained from X-Ray diffraction and electron microscopy studies.


2012 ◽  
Vol 545 ◽  
pp. 100-104 ◽  
Author(s):  
J. Podder ◽  
M.R Islam

ZnO and Zn1-xCdxO thin films have been deposited onto glass substrate using spray pyrolysis at 200°C. Cadmium-zinc alloy thin films have been prepared by taking different concentrations of cadmium (Cd). The elemental analysis and the surface morphology of the films were carried by the energy dispersive X-ray (EDX) and scanning electron microscopy (SEM). The EDX data show that the films are highly stoichiometric. The SEM images show that the film changes from nano fiber to grain with the increase of Cd concentrations. The X-ray diffraction pattern shows that the films are polycrystalline in nature. The crystal structure of the films changes from hexagonal-ZnO to cubic-CdO depending on the concentration of Zn and Cd in the Zn1-xCdxO films. The optical properties of these films were studied by UV-VIS spectroscopy. The optical band gap of the films was changed from 3.2 to 2.4 with the variation of cadmium.


2019 ◽  
Vol 397 ◽  
pp. 81-87 ◽  
Author(s):  
Farid Khediri ◽  
Abdelkader Hafdallah ◽  
Mouna Bouhelal

In this work Zinc oxide thin films prepared by spray pyrolysis technique. A set of ZnO thin films were deposited with various deposition times, on glass substrate at 350 °C. The precursor solution is formed with zinc acetate in distilled methanol with 0.1 molarity. The deposition time was ranged from 2 to 8 min. The structural and optical properties of those films were examined by X-ray diffraction (XRD) and ultraviolet-visible spectrometer (UV). X-ray diffraction patterns of the ZnO thin films showed polycrystalline hexagonal wurtzite structure and the preferred orientation was along (002) plane when the grain size varied between 9.66 and 16.67nm. ZnO thin films were highly transparent in the visible with the maximum transmittance of 85% and the optical band gap was found between 3.25 and 3.28 eV.


2007 ◽  
Vol 280-283 ◽  
pp. 1171-1174 ◽  
Author(s):  
Ji Ming Bian ◽  
Xiao Min Li ◽  
Xiang Dong Gao ◽  
Wei Dong Yu

Ultrasonic spray pyrolysis has been applied to deposit MgO thin films on Si(100) and quartz glass substrate. The microstructures and properties of the as-grown MgO thin films were examined by X-ray diffraction, scanning electron microscopy, spectrophotometer and semiconductor resistivity meter. The results indicates that the MgO thin films deposited under optimal conditions shows smooth and dense surface without visible pores or defects over the substrate, and as well as good thickness uniformity. Almost completely (100)-oriented MgO films with the transmission higher than 90% in UV/VIS region and the resistivity at least in the order of 107Ω-cm were obtained. MgO thin film with such a crystal quality seems to be very suitable for acting as a buffer layer for the subsequent epitaxial growth of films.


2007 ◽  
Vol 994 ◽  
Author(s):  
Jose Fernando Condeles ◽  
Ademar Marques Caldeira-Filho ◽  
Marcelo Mulato

AbstractSpray pyrolysis was used for the deposition of lead iodide (PbI2) thin films using N.N-dimethylformamide (DMF) as an alternative solvent under varying deposition parameters. Final thickness of 60 μm was obtained for a total deposition time of 2.5 hours. The films were characterized mainly by using Raman and photoluminescence, but additional techniques such as X-ray diffraction, scanning electron microscopy and dark conductivity as a function of temperature were also employed. Thick PbI2 films deposited by spray pyrolysis using DMF as a solvent are promising to be used in medical systems as X-ray imaging.


2012 ◽  
Vol 626 ◽  
pp. 672-676
Author(s):  
Boon Hoong Ong ◽  
Heng Choy Lee ◽  
Sharifah Bee Abdul Hamid

Nanostructured SnO2 thin films were deposited on glass substrate using chemical spray pyrolysis technique. Three influent synthesis parameters, namely (i) the precursor concentration (0.2M and 0.5M), (ii) the substrate temperature (250°C and 350°C) and (iii) doping with zinc (Zn) were investigated in term of their effects on the morphology and structure of SnO2 thin films. These films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectrometry (EDX) techniques. The grain size of the films was observed to increase as the concentration of the precursors is increased. Substrate temperature is proved to be crucial in determining the crystallinity of the films as the films are reported to grow at temperature above 270°C. Besides, the addition of dopant was found to reduce the grain size of the film.


2018 ◽  
Vol 1 (2) ◽  
pp. 9-12
Author(s):  
S.P. Soundararajan ◽  
M Murugan ◽  
K Mohanraj ◽  
Babu Balraj ◽  
Tamiloli Devendhiran

In this work the copper oxide thin films have been coated using Jet nebulizer spray pyrolysis technique. The prepared CuO thin films were characterized by various techniques such as X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Energy dispersive X-ray spectroscopy (EDX) techniques, in order to study its crystalline nature, particle size and the band gap respectively.


Author(s):  
A. O. Musa ◽  
A. B. Ahmed ◽  
Mansur Said ◽  
Mani Tsoho ◽  
A. B. Suleiman

Fluorine doped tin oxide, Cadmium Sulphide  and Cadmium Telluride  thin films have been deposted on Soda Lime glass substrate at  respectively by spray pyrolysis (SP) technique and are important semiconductor materials in optoelectronic devices such as optical sensors, light-emitting diodes, transistors and photovoltaic cells.  thin films were characterized by various techniques such as X-ray diffraction, SEM and optical studies. X-ray diffraction measurements show that the deposited   was found to be of cassiterite type with tetragonal rutile structure, observation of peaks of different planes on an X-ray diffraction graph of  thin film showed that  film obtained were cubic structure. The main peak value of  thin film is seen at , which is the characteristic peak of the  compound  and the  film structure was obtained at the major peak  indicating the preferred orientation of  films along  direction. This confirms the formation of  thin film, with (111) as the strongest preferred plane of orientation. The surface morphology of the thin films was analysed by scanning electron microscopy (SEM). The optical energy band gap of thin films are determine  The results showed that the prepared FTO, CdS and CdTe films can be used in solar energy applications.


2019 ◽  
Vol 253 ◽  
pp. 03002 ◽  
Author(s):  
Youcef Bellal ◽  
Antar Bouhank ◽  
Hacene Serrar ◽  
Tunç Tüken ◽  
Gökmen Sığırcık

A simple and low-cost procedure (spray pyrolysis) was used to elaborate a copper oxide thin films on ordinary glass substrates. A copper nitrate was used and dissolved in two different solutions (Water, Methanol) S1 and S2 respectively in order to obtain an equal concentration; CS1,S2=0.5M. The spray pyrolysis deposition made at fixed temperature T=500°C and different volumes of S1 or S2 on the glass substrates. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectrophotometry were used to determinate the structural, morphological and optical properties of CuO thin films. The X-ray diffraction patterns confirm the presence of the polycrystalline phase of CuO as monoclinic crystal structure with preferential orientation along (110), (002), (111), (200) and (020). Their optical band gaps ranged from 3.95 to 4.02eV for thin films made with S1, and from 1.6 to 1.95eV for thin films made with S2 with a high absorbency in the visible region, which is in agreement with the values of the literature.


Sign in / Sign up

Export Citation Format

Share Document