Mechanical properties of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3−δ with various porosities and pore sizes

2019 ◽  
Vol 54 (7) ◽  
pp. 5256-5265 ◽  
Author(s):  
Md. Nurul Islam ◽  
Wakako Araki ◽  
Yoshio Arai
2021 ◽  
Author(s):  
◽  
William King, III ◽  

The ideal “off the shelf” tissue engineering, small-diameter (< 6 mm inner diameter (ID)) vascular graft hinges on designing a template that facilitates transmural ingrowth of capillaries to regenerate an endothelized neointimal surface. Previous traditionally electrospun (TES) approaches to create bioresorbable vascular grafts lack the pore sizes required to facilitate transmural capillary ingrowth required for successful in situ neovascular regeneration. Therefore, the ability to create scaffolds with program-specific architectures independent of fiber diameter via the relatively recent sub-technique of near-field electrospinning (NFES) represents a promising solution to create tissue engineering vascular grafts. These programmed large pore sizes are anticipated to promote in situ regeneration and improve the outcomes as well as the quality of life of patients with arterial disease. In this dissertation, we manufactured via NFES as well as characterized biodegradable polydioxanone (PDO) small-diameter vascular grafts. Chapter 1 introduces the need for off-the-shelf, small-diameter vascular grafts to facilitate in situ regeneration, the process and pore size limitations of TES vascular grafts, and the promising use of NFES to develop precisely tailored PDO vascular grafts. Chapter 2 describes the process of NFES and details the current progress in NFES of biomedical polymers as well as the major limitations that exist in the field. Chapters 3, 4, and 5 contain primary research exploring the creation of an NFES vascular graft scaffold and characterizing the mechanical as well as biological response of these scaffolds. Specifically, in Chapter 3 we demonstrate a NFES apparatus designed around a commercial 3D printer to write PDO microfibers. The processing parameters of air gap, polymer concentration, translational velocity, needle gauge, and applied voltage were characterized for their effects on PDO fiber diameter. The processing parameters of polymer concentration and translational fiber deposition velocity were further characterized for their effects on fiber crystallinity and individual fiber uniformity. The precision of fiber stacking via a 3D printer was qualitatively evaluated to inform the creation of 3D scaffolds to guide the alignment of human gingival fibroblasts. It was found that fiber diameters correlate positively with polymer concentration, applied voltage, and needle gauge and inversely correlate with translational velocity and air gap distance. Individual fiber diameter variability decreases, and crystallinity increases with increasing translational fiber deposition velocity. These data resulted in the creation of tailored PDO 3D scaffolds which guided the alignment of primary human fibroblast cells. Together, these results suggest that NFES of PDO can be scaled to create precise geometries with tailored fiber diameters for vascular graft scaffolds. In Chapter 4, we demonstrated a NFES device to semi-stably write PDO microfibers. The polymer spinneret was programmed to translate in a stacking grid pattern, which resulted in a scaffold with highly aligned grid fibers that were intercalated with low density, random fibers. As a consequence of this random switching process, increasing the grid dimensions resulted in both a lower density of fibers in the center of each grid in the scaffold as well as a lower density of “rebar-like” stacked fibers per unit area. These hybrid architecture scaffolds resulted in tailorable as well as greater surface pore sizes as given by scanning electron micrographs and effective object permeability as indicated by fluorescent microsphere filtration compared to TES scaffolds of the same fiber diameter. Furthermore, these programmable scaffolds resulted in tailorability in the characterized mechanical properties ultimate tensile strength, percent elongation, yield stress, yield elongation, and Young’s modulus independent of fiber diameter compared to the static TES scaffold characterization. Lastly, the innate immune response of neutrophil extracellular traps (NETs) was further attenuated on NFES scaffolds compared to TES scaffolds. These results suggest that this novel NFES scaffold architecture of PDO can be highly tailored as a function of programming for small diameter vascular graft scaffolds. In Chapter 5, we created two types of NFES PDO architectures, as small-diameter vascular graft scaffolds. The first architecture type consisted of a 200 x 200 µm and 500 x 500 µm grid geometry with random fiber infill produced from one set of processing parameters, while the second architecture consisted of aligned fibers written in a 45°/45° and 20°/70° offset from the long axis, both on a 4 mm diameter cylindrical mandrel. These vascular graft scaffolds were characterized for their effective object transit pore size, mechanical properties, and platelet-material interactions compared to TES scaffolds and Gore-Tex® vascular grafts. It was found that effective pore size, given by 9.9 and 97 µm microsphere filtration through the scaffold wall for NFES grafts, was significantly more permeable compared to TES grafts and Gore-Tex® vascular grafts. Furthermore, the characterized mechanical properties of ultimate tensile strength, percent elongation, suture retention, burst pressure, and Young’s modulus were all tailorable for NFES grafts, independent of fiber diameter, compared to TES graft characterization. Lastly, platelet adhesion was attenuated on large pore size NFES grafts compared to the TES grafts which approximated the low level of platelet adhesion measured on Gore-Tex® grafts, with all grafts showing minimal platelet activation given by P-selectin surface expression. Together, these results suggest a highly tailorable process for the creation of the next generation of small-diameter vascular grafts. Lastly, Chapter 6 expounds future considerations for continuing research in NFES technology, NFES for general tissue engineering, and NFES for vascular tissue engineering as well as gives final conclusions. Together, the finding of this dissertation indicated that NFES vascular grafts result in seamless, small diameter tubular scaffolds with programmable pore sizes on the magnitude anticipated to facilitate transmural endothelialization as well as programmable mechanical properties that approximate native values. Thus, this work represents the next step in developing bioinstructive designed scaffolds to facilitate in situ vascular regeneration to improve the outcomes as well as the quality of life of patients with arterial vascular disease.


2010 ◽  
Vol 654-656 ◽  
pp. 827-830 ◽  
Author(s):  
Yang An ◽  
Chun Hui Yang ◽  
Peter D. Hodgson ◽  
Cui E Wen

In the study, both experimental work and numerical modeling are performed to investigate the pore size effects on the mechanical properties and deformation behaviours of titanium foams. Cylindrical titanium foam samples with different pore sizes are fabricated through powder metallurgy. Scanning electron microscope (SEM) is used to determine the pore size, pore distribution and the ratios of the length to width of pores. Compressive tests are carried out to determine the mechanical properties of the titanium foams with different pore sizes. Finally, finite element modeling is attempted to simulate the deformation behaviour and the mechanical properties of the titanium foams. Results indicate that titanium foams with different pore sizes have different geometrical characteristics, which lead to different deformation behaviours of cell walls during compression, resulting in different mechanical properties of titanium foams.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4340
Author(s):  
Pedro Javier Lloreda-Jurado ◽  
Laura Chicote ◽  
Ernesto Chicardi ◽  
Ranier Sepúlveda

The aim of this work was to study the effect of the particle size range, the freeze casting temperature and sintering temperature on the capillarity performance and mechanical properties of Ni wicks manufactured by freeze-casting. The use of Ni/camphene-polystyrene suspensions creates wicks with an open porosity above 80% and average pore sizes of 38 μm to 17 μm by tailoring the particle size ranges and freezing temperatures employed. The incorporation of PS and the use of a continuous freeze-casting process reduces the particle sedimentation and generates a highly interconnected pore structure with regular pore sizes across the sample. The capillarity performances exhibit a fast and complete water adsorption, especially in Ni wicks freeze-casted at 10 °C and sintered at 800 °C, but only when the smaller particle size range is used do Ni wicks achieve sufficient mechanical strength.


2019 ◽  
Vol 15 (2) ◽  
pp. 146-149
Author(s):  
Alireza Lari ◽  
Naznin Sultana ◽  
Chin Fhong Soon

Biomaterial-based scaffolds with suitable characteristics are highly desired in tissue engineering (TE) application. Biocomposites based on polymer and ceramics increase the chance for modulating the properties of scaffold. In recent years, researchers have considered conductive polymers to be used in TE application, due to their conductivity. This property has a good impact on tissue regeneration. A suitable design for bone substitute that consists of considerations such as material component, fabrication technique and mechanical properties. The previous studies on PEDOT:PSS/nHA/CS showed high wettability rate but low mechanical properties. Polycaprolactone (PCL) is a biodegradable and biocompatible polymer with a low wettability. The incorporation of PCL inside biocomposite can lead to the decrement in wettability and increment in mechanical property. In addition, this paper would examine the feasibility of blending of PCL and chitosan to fabricate PEDOT:PSS/nHA/CS composite scaffold. The fabrication technique of freezing/ lyophilization was used in this study. The scaffolds were characterized morphologically using scanning electron microscopy (SEM). Wettability was studied using a contact angle instrument. The attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) spectra interpreted the presence of polymeric ingredients within composite scaffold. Conductivity of the scaffolds was measured using a Digital Multimeter. In-vitro biological evaluation of the scaffolds was studied using human skin Fibroblast (HSF) cell line. The morphological study of biocomposite PEDOT:PSS/nHA/CS/PCL scaffold revealed random pore sizes and 66% porosity. Contact angle of the scaffold was increased and the swelling property and pore sizes were decreased after blending of PCL polymer. The viability of HSF cells on biocomposite PEDOT:PSS/nHA/CS/PCL scaffold was 85%. After 7 days, SEM analysis revealed the presence of cells on the surface of scaffold. In conclusion, the results suggested that PEDOT:PSS/nHA/CS/PCL biocomposite scaffold was non-toxic to cells and has suitable properties.


Author(s):  
M. G. Li ◽  
X. Y. Tian ◽  
X. B. Chen

Dispensing technique is one of the promising solid freeform (SFF) methods to fabricate scaffolds with controllable pore sizes and porosities. In this paper, a model to represent the dispensing-based SFF fabrication process is developed. Specifically, the mechanical properties of the scaffold material and its influence on the fabrication process are examined; the flow rate of the scaffold material dispensed and the pore size and porosity of the scaffold fabricated in the process are represented. In order to generate scaffold strands without either tensile or compressive stress, the optimal moving speed of the dispensing head is determined from the flow rate of the scaffold material dispensed. Experiments were also carried out to illustrate the effectiveness of the model developed.


2014 ◽  
Vol 11 (1) ◽  
pp. 44-57 ◽  
Author(s):  
Hye Yun Kim ◽  
Ha Neul Kim ◽  
So Jin Lee ◽  
Jeong Eun Song ◽  
Soon Yong Kwon ◽  
...  

Soft Matter ◽  
2017 ◽  
Vol 13 (38) ◽  
pp. 6852-6857 ◽  
Author(s):  
Bingjie Sun ◽  
Zhijian Wang ◽  
Qiguang He ◽  
Wei Fan ◽  
Shengqiang Cai

We report the preparation of porous double network hydrogels with different pore sizes. These porous gels exhibit excellent mechanical properties, fast solvent-absorption and higher solvent-absorption capacity.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1718 ◽  
Author(s):  
Hao Yang Zhang ◽  
Heng Bo Jiang ◽  
Jeong-Hyun Ryu ◽  
Hyojin Kang ◽  
Kwang-Mahn Kim ◽  
...  

The aim of this study was to fabricate bioresorbable polylactide (PLA) membranes by 3D printing and compare their properties to those of the membranes fabricated by the conventional method and compare the effect of different pore sizes on the properties of the 3D-printed membranes. PLA membranes with three different pore sizes (large pore-479 μm, small pore-273 μm, and no pore) were 3D printed, and membranes fabricated using the conventional solvent casting method were used as the control group. Scanning electron microscopy (SEM) and micro-computed tomography (µ-CT) were taken to observe the morphology and obtain the porosity of the four groups. A tensile test was performed to compare the tensile strength, elastic modulus, and elongation at break of the membranes. Preosteoblast cells were cultured on the membranes for 1, 3 and 7 days, followed by a WST assay and SEM, to examine the cell proliferation on different groups. As a result, the 3D-printed membranes showed superior mechanical properties to those of the solvent cast membranes, and the 3D-printed membranes exhibited different advantageous mechanical properties depending on the different pore sizes. The various fabrication methods and pore sizes did not have significantly different effects on cell growth. It is proven that 3D printing is a promising method for the fabrication of customized barrier membranes used in GBR/GTR.


2012 ◽  
Vol 1418 ◽  
Author(s):  
Steve Lee ◽  
Michael Porter ◽  
Scott Wasko ◽  
Grace Lau ◽  
Po-Yu Chen ◽  
...  

ABSTRACTNatural and synthetic hydroxyapatite (HA) scaffolds for potential load-bearing bone implants were fabricated by two methods. The natural scaffolds were formed by heating bovine cancellous bone at 1325°C, which removed the organic and sintered the HA. The synthetic scaffolds were prepared by freeze-casting HA powders, using different solid loadings (20–35 vol.%) and cooling rates (1–10°C/min). Both types of scaffolds were infiltrated with polymethylmethacrylate (PMMA). The porosity, pore size, and compressive mechanical properties of the natural and synthetic scaffolds were investigated and compared to that of natural cortical and cancellous bone. Prior to infiltration, the sintered cancellous scaffolds exhibited pore sizes of 100 – 300 μm, a strength of 0.4 – 9.7 MPa, and a Young’s modulus of 0.1 – 1.2 GPa. The freeze-casted scaffolds had pore sizes of 10 – 50 μm, strengths of 0.7 – 95.1 MPa, and Young’s moduli of 0.1 –19.2 GPa. When infiltrated with PMMA, the cancellous bone- PMMA composite showed a strength of 55 MPa and a Young’s modulus of 4.5 GPa. Preliminary data for the synthetic HA-PMMA composite showed a strength of 42 MPa and a modulus of 0.8 GPa.


Sign in / Sign up

Export Citation Format

Share Document