scholarly journals Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies

Author(s):  
Anouk Guyer ◽  
Cong van Doan ◽  
Corina Maurer ◽  
Ricardo A. R. Machado ◽  
Pierre Mateo ◽  
...  

AbstractHow climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.

Climate ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 55
Author(s):  
Oscar Pita-Díaz ◽  
David Ortega-Gaucin

Sufficient evidence is currently available to demonstrate the reality of the warming of our planet’s climate system. Global warming has different effects on climate at the regional and local levels. The detection of changes in extreme events using instrumental data provides further evidence of such warming and allows for the characterization of its local manifestations. The present study analyzes changes in temperature and precipitation extremes in the Mexican state of Zacatecas using climate change indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI). We studied a 40-year period (1976–2015) using annual and seasonal time series. Maximum and minimum temperature data were used, as well as precipitation statistics from the Mexican climatology database (CLICOM) provided by the Mexican Meteorological Service. Weather stations with at least 80% of data availability for the selected study period were selected; these databases were subjected to quality control, homogenization, and data filling using Climatol, which runs in the R programming language. These homogenized series were used to obtain daily grids of the three variables at a resolution of 1.3 km. Results reveal important changes in temperature-related indices, such as the increase in maximum temperature and the decrease in minimum temperature. Irregular variability was observed in the case of precipitation, which could be associated with low-frequency oscillations such as the Pacific Decadal Oscillation and the El Niño–Southern Oscillation. The possible impact of these changes in temperature and the increased irregularity of precipitation could have a negative impact on the agricultural sector, especially given that the state of Zacatecas is the largest national bean producer. The most important problems in the short term will be related to the difficulty of adapting to these rapid changes and the new climate scenario, which will pose new challenges in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charlotte Descamps ◽  
Muriel Quinet ◽  
Anne-Laure Jacquemart

In temperate ecosystems, elevated temperatures, and drought occur especially during spring and summer, which are crucial periods for flowering, pollination, and reproduction of a majority of temperate plants. While many mechanisms may underlie pollinator decline in the wake of climate change, the interactive effects of temperature and water stress on the quantity and quality of floral nectar and pollen resources remain poorly studied. We investigated the impact of temperature rise (+3 and +6°C) and water stress (soil humidity lower than 15%) on the floral resources produced by the bee-pollinated species Borago officinalis. Nectar volume decreased with both temperature rise and water stress (6.1 ± 0.5 μl per flower under control conditions, 0.8 ± 0.1 μl per flower under high temperature and water stress conditions), resulting in a 60% decrease in the total quantity of nectar sugars (mg) produced per flower. Temperature rise but not water stress also induced a 50% decrease in pollen weight per flower but a 65% increase in pollen polypeptide concentration. Both temperature rise and water stress increased the total amino acid concentration and the essential amino acid percentage in nectar but not in pollen. In both pollen and nectar, the relative percentage of the different amino acids were modified under stresses. We discuss these modifications in floral resources in regards to plant–pollinator interactions and consequences on plant pollination success and on insect nutritional needs.


Author(s):  
Naga Coulibaly ◽  
Talnan Jean Honoré Coulibaly ◽  
Ziyanda Mpakama ◽  
Issiaka Savané

In the context of climate change in West Africa characterized by a reduction of precipitation, this study was conducted to evaluate the impact of climate change on water resources from now to the end of the 21st century in the transboundary watershed of the Sassandra River shared by Guinea and Côte d’Ivoire. Historical and future climate (Representative Concentration Pathways or RCPs 4.5 and 8.5 scenarios) data were projected with the model. The Abdus Salam ICTP RegCM4 was used. The hydrological modeling of the river basin was carried out with the conceptual hydrological model, GR2M. This model is a monthly time steps model that allows the assessment of the discharge of the Sassandra River for each climate scenario according to the 2030 (2021–2040), 2050 (2041–2060), 2070 (2061–2080), and 2090 (2081–2100) horizons. The results showed a reduction of the annual discharge when compared to the baseline (1961–1980). For the RCP 4.5, the observed values went from –1.2% in 2030 to –2.3% in 2070 and rose to –2.1% in 2090. Concerning the RCP 8.5, we saw a variation from –4.2% to –7.9% in the 2030 and 2090 horizons, respectively. With the general decrease of rainfall in West Africa, it is appropriate to assess the impact on water resources on the largest rivers (Niger, Gambia, and Senegal) that irrigate the Sahelo-Saharian zone.


Author(s):  
Oscar Pita-Díaz ◽  
David Ortega-Gaucin

Sufficient evidence is currently available to demonstrate the reality of the warming of our planet's climate system. Global warming has different effects on climate at the regional and local levels. The detection of changes in extreme events using instrumental data provides further evidence of such warming and allows for the characterization of its local manifestations. The present study analyzes changes in temperature and precipitation extremes in the Mexican state of Zacatecas using climate change indices developed by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDI). We studied a 40-year period (1976-2015) using annual and seasonal time scales. Maximum and minimum temperature data were used, as well as precipitation statistics from the Mexican climatology database (CLICOM) provided by the Mexican meteorological service. Weather stations with at least 80% of data availability for the selected study period were selected; these databases were subjected to quality control, homogenization, and data filling using Climatol, which runs in the R programming language. These homogenized series were used to obtain daily grides of the three variables at a resolution of 1.3 km. Results reveal important changes in temperature-related indices, such as the increase in maximum temperature and the decrease in minimum temperature. Irregular variability was observed in the case of precipitation, which could be associated with low-frequency oscillations such as the Pacific Decadal Oscillation and the El Niño–Southern Oscillation. The possible impact of these changes in temperature and the increased irregularity of precipitation could have a negative impact on the agricultural sector, especially given that the state of Zacatecas is the largest national bean producer. The most important problems in the short term will be related to the difficulty of adapting to these rapid changes and the new climate scenario, which will pose new challenges in the future.


Author(s):  
Tangzhe Nie ◽  
Zhongxue Zhang ◽  
Zhijuan Qi ◽  
Peng Chen ◽  
Zhongyi Sun ◽  
...  

Paddy fields have become a major global anthropogenic CH4 emission source, and climate change affects CH4 emissions from paddy ecosystems by changing crop growth and the soil environment. It has been recognized that Heilongjiang Province has become an important source of CH4 emission due to its dramatically increased rice planting area, while less attention has been paid to characterize the effects of climate change on the spatiotemporal dynamics of CH4 fluxes. In this study, we used the calibrated and validated Long Ashton Research Station Weather Generator (LARS-WG) model and DeNitrification-DeComposition (DNDC) model to simulate historical and future CH4 fluxes under RCP 4.5 and RCP 8.5 of four global climate models (GCMs) in Heilongjiang Province. During 1960–2015, the average CH4 fluxes and climatic tendencies were 145.56 kg C/ha and 11.88 kg C/ha/(10a), respectively. Spatially, the CH4 fluxes showed a decreasing trend from west to east, and the climatic tendencies in the northern and western parts were higher. During 2021–2080, the annual average CH4 fluxes under RCP 4.5 and RCP 8.5 were predicted to be 213.46 kg C/ha and 252.19 kg C/ha, respectively, and their spatial distributions were similar to the historical distribution. The average climatic tendencies were 13.40 kg C/ha/(10a) and 29.86 kg C/ha/(10a), respectively, which decreased from west to east. The simulation scenario analysis showed that atmospheric CO2 concentration and temperature affected CH4 fluxes by changing soil organic carbon (SOC) content and plant biomass. This study indicated that a paddy ecosystem in a cold region is an important part of China’s greenhouse gas emission inventory in future scenarios.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3312
Author(s):  
Ranjeet K. Jha ◽  
Prasanta K. Kalita ◽  
Richard A. Cooke ◽  
Praveen Kumar ◽  
Paul C. Davidson ◽  
...  

Climate change is a well-known phenomenon all over the globe. The influence of projected climate change on agricultural production, either positive or negative, can be assessed for various locations. The present study was conducted to investigate the impact of projected climate change on rice’s production, water demand and phenology for the state of Bihar, India. Furthermore, this study assessed the irrigation water requirement to increase the rice production by 60%, for the existing current climate scenario and all the four IPCC climate change scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) by the 2050s (2050–2059). Various management practices were used as adaptation methods to analyze the requirement of irrigation water for a 60% increase in rice production. The climate data obtained from the four General Circulation Models (GCMs) (bcc_csm1.1, csiro_mk3_6_0, ipsl_cm5a_mr and miroc_miroc5) were used in the crop growth model, with the Decision Support System for Agrotechnology Transfer (DSSAT) used to simulate the rice yield, phenological days and water demand under all four climate change scenarios. The results obtained from the CERES-Rice model in the DSSAT, corresponding to all four GCMs, were ensembled together to obtain the overall change in yield, phenology and water demand for 10 years of interval from 2020 to 2059. We investigated several strategies: increasing the rice’s yield by 60% with current agronomic practice; increasing the yield by 60% with conservation agricultural practice; and increasing the rice yield by 30% with current agronomic practice as well as with conservation agricultural practices (assuming that the other 30% increase in yield would be achieved by reducing post-harvest losses by 30%). The average increase in precipitation between 2020 and 2059 was observed to be 5.23%, 13.96%, 9.30% and 9.29%, respectively, for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5. The decrease in yield during the 2050s, from the baseline period (1980–2004), was observed to be 2.94%, 3.87%, 4.02% and 5.84% for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively. The irrigation requirement was predicted to increase by a range of 39% to 45% for a 60% increase in yield using the current agronomic practice in current climate scenario and by 2050s with all the four climate change scenarios from the baseline period (1980–2004). We found that if we combine both conservation agriculture and removal of 30% of the post-harvest losses, the irrigation requirement would be reduced by 26% (45 to 19%), 20% (44 to 24%), 21% (43 to 22%), 22% (39 to 17%) and 20% (41 to 21%) with current climate scenario, RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 conditions, respectively. This combination of conservation practices suggests that the irrigation water requirement can be reduced by a large percentage, even if we produce 60% more food under the projected climate change conditions.


2015 ◽  
Vol 35 (3) ◽  
Author(s):  
吕晓敏 LV Xiaomin ◽  
王玉辉 WANG Yuhui ◽  
周广胜 ZHOU Guangsheng ◽  
许振柱 XU Zhenzhu ◽  
陈军 CHEN Jun ◽  
...  

2021 ◽  
Author(s):  
Solène Blanchard ◽  
François Verheggen ◽  
Isabelle Van de Vreken ◽  
Aurore Richel ◽  
Claire Detrain

Abstract Honeydew is the keystone of many interactions between aphids and their predators, parasitoids, or mutualistic partners. Despite the crucial importance of honeydew in the aphid-ant mutualism, very few studies have investigated the potential impact of climate change on its production and composition. Here, we quantified changes in the sugar compounds and in the amount of honeydew droplets released by Aphis fabae reared on Vicia faba plants, under elevated levels of temperature and/or CO2. A combined elevation of these two abiotic factors increased honeydew production as well as the total amount in sugars, in particular the concentration of fructose and melezitose. Increased amount of sugars in phloem sap under elevated CO2 conditions, along with a raise of aphid metabolism and sap ingestion to compensate for water loss under elevated temperatures might explain these observed changes increase in honeydew production and sugar content. A higher amount of excreted honeydew coupled with a higher concentration in melezitose and fructose are expected to enhance both the feeding behavior and the laying of a recruitment trail by ant foragers, thereby reinforcing the ant-homopteran mutualism under a scenario of elevated temperature and CO2 levels. We discuss about the enhancing and counteracting effects of climate change on other biological agents (gut microorganisms, predators, parasitoids) that interact with aphids in a complex multitrophic system.


2003 ◽  
Vol 60 (6) ◽  
pp. 635-639 ◽  
Author(s):  
Kyla M Flanagan ◽  
Edward McCauley ◽  
Frederick Wrona ◽  
Terry Prowse

Arctic aquatic systems are considered to be highly susceptible to climate change. Both increases in temperature and nutrient input would be anticipated to alter primary production within these lakes. Consequently, understanding the current relationship between nutrients and productivity is crucial for predicting the effects of climate change. In this paper, we synthesize published data on algal biomass, total phosphorus, total nitrogen, maximum depth, altitude, longitude, and latitude to determine whether average algal biomass differs for temperate and arctic lakes. A total of 57 sources were used, resulting in data for 433 lake-years, ranging in latitudes from 41 to 79°N. Average algal biomass observed during the ice-free season increased significantly with phosphorous levels, but the latitude of the system had a significant negative impact on algal biomass. We briefly outline two major hypotheses, based on existing empirical evidence, for the lower algal yield found in higher latitude systems. The first hypothesis discusses bottom-up control and the influence of abiotic factors on algal biomass. The second hypothesis relates to food chain composition and top-down influences. The latitudinal effect on algal yield suggests that arctic lakes could dramatically increase in productivity if these systems experience increases in temperature and nutrient concentrations as predicted by climate change models.


2020 ◽  
Author(s):  
Elena Hamann ◽  
Cameron Blevins ◽  
Steven J. Franks ◽  
M. Inam Jameel ◽  
Jill T. Anderson

ABSTRACTPlant-herbivore interactions have evolved in response to co-evolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically-corrected meta-analyses, we find that elevated temperatures, CO2 concentration, drought stress and nutrient conditions directly and indirectly induce greater herbivore consumption, primarily in agricultural systems. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2, and drought stress increase foliar herbivory, and our meta-analysis suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2, temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.


Sign in / Sign up

Export Citation Format

Share Document