Nonstationary method of measuring flow curves of low-viscosity settling suspensions

2011 ◽  
Vol 84 (3) ◽  
pp. 490-494
Author(s):  
V. A. Mansurov ◽  
D. V. Mansurov ◽  
I. V. Yamaikina
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yiyan Lv ◽  
Wei Zhu ◽  
Tingting Han

From experiments on bonding water of different slurries and the analysis of flow curves, the bilinear fluid model has been improved. The results showed that the rheological parameters correspond to physical processes at different stages of shear strain. As shear rate increases, slurries evolve from high-viscosity Bingham fluids to low-viscosity Bingham fluids. Specific surface area determines the number of edge-to-face arrangements; mineral composition influences the binding strength of each edge-to-face arrangement; and the volume fraction of particles regulates the distance between clay particles and number of edge-to-face arrangements.


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


Author(s):  
S. Lehner ◽  
H.E. Bauer ◽  
R. Wurster ◽  
H. Seiler

In order to compare different microanalytical techniques commercially available cation exchange membrane SC-1 (Stantech Inc, Palo Alto), was loaded with biologically relevant elements as Na, Mg, K, and Ca, respectively, each to its highest possible concentration, given by the number concentration of exchangeable binding sites (4 % wt. for Ca). Washing in distilled water, dehydration through a graded series of ethanol, infiltration and embedding in Spurr’s low viscosity epoxy resin was followed by thin sectioning. The thin sections (thickness of about 50 nm) were prepared on carbon foils and mounted on electron microscopical finder grids.The samples were analyzed with electron microprobe JXA 50A with transmitted electron device, EDX system TN 5400, and on line operating image processing system SEM-IPS, energy filtering electron microscope CEM 902 with EELS/ESI and Auger spectrometer 545 Perkin Elmer.With EDX, a beam current of some 10-10 A and a beam diameter of about 10 nm, a minimum-detectable mass of 10-20 g Ca seems within reach.


Author(s):  
S.L. White ◽  
C.B. Jensen ◽  
D.D. Giera ◽  
D.A. Laska ◽  
M.N. Novilla ◽  
...  

In vitro exposure to LY237216 (9-Deoxo-11-deoxy-9,11-{imino[2-(2-methoxyethoxy)ethylidene]-oxy}-(9S)-erythromycin), a macrolide antibiotic, was found to induce cytoplasmic vacuolation in L6 skeletal muscle myoblast cultures (White, S.L., unpubl). The present study was done to determine, by autoradiographic quantitative analysis, the subcellular distribution of 3H-LY237216 in L6 cells.L6 cells (ATCC, CRL 1458) were cultured to confluency on polycarbonate membrane filters (Millipore Corp., Bedford, MA) in M-199 medium (GIBCO® Labs) with 10% fetal bovine serum. The cells were exposed from the apical surface for 1-hour to unlabelled-compound (0 μCi/ml) or 50 (μCi/ml of 3H-LY237216 at a compound concentration of 0.25 mg/ml. Following a rapid rinse in compound-free growth medium, the cells were slam-frozen against a liquid nitrogen cooled, polished copper block in a CF-100 cryofixation unit (LifeCell Corp., The Woodlands, TX). Specimens were dried in the MDD-C Molecular Distillation Drier (LifeCell Corp.), vapor osmicated and embedded in Spurrs low viscosity resin. Ultrathin sections collected on formvar coated stainless steel grids were counter-stained, then individually mounted on corks. A monolayer of Ilford L4 nuclear emulsion (Polysciences, Inc., Warrington, PA) was placed on the sections, utilizing a modified “loop method”. The emulsions were exposed for 7-weeks in a light-tight box at 4°C. Autoradiographs were developed in Microdol-X developer and examined on a Philips EM410LS transmission electron microscope. Quantitative analysis of compound localization employed the point and circle approach of Williams; incorporating the probability circle method of Salpeter and McHenry.


Author(s):  
B. Van Meerbeek ◽  
L. J. Conn ◽  
E. S. Duke

Restoration of decayed teeth with tooth-colored materials that can be bonded to tooth tissue has been a highly desirable property in restorative dentistry for many years. Advantages of such an adhesive restorative technique over conventional techniques using non-adhesive metal-based restoratives include improved restoration retention with minimal sacrifice of sound tooth tissue for retention purposes, superior adaptation and sealing of the restoration margins in prevention of caries recurrence, improved stress distribution across the tooth-restoration interface throughout the whole tooth, and even reinforcement of weakened tooth structures. The dental adhesive technology is rapidly changing. An efficient resin bond to enamel has already long been achieved. Its bonding mechanism has been fully elucidated and has proven to be a durable and reliable clinical treatment. However, bonding to dentin represents a greater challenge. After the failures of a dentin acid-etch technique in imitation of the enamel phosphoric-acid-etch technique and a bonding procedure based on chemical adhesion, modern dentin adhesives are currently believed to bond to dentin by a micromechanical hybridization process. This process is developed by an initial demineralization of the dentin surface layer with acid etchants exposing a collagen fibril arrangement with interfibrillar microporosities that subsequently become impregnated by low-viscosity monomers. Although the development of such a hybridization process has well been documented in the literature, questions remain with respect to parameters of-primary importance to adhesive efficacy.


Author(s):  
Eduardo A. Kamenetzky ◽  
David A. Ley

The microstructure of polyacrylonitrile (PAN) beads for affinity chromatography bioseparations was studied by TEM of stained ultramicrotomed thin-sections. Microstructural aspects such as overall pore size distribution, the distribution of pores within the beads, and surface coverage of functionalized beads affect performance properties. Stereological methods are used to quantify the internal structure of these chromatographic supports. Details of the process for making the PAN beads are given elsewhere. TEM specimens were obtained by vacuum impregnation with a low-viscosity epoxy and sectioning with a diamond knife. The beads can be observed unstained. However, different surface functionalities can be made evident by selective staining. Amide surface coverage was studied by staining in vapor of a 0.5.% RuO4 aqueous solution for 1 h. RuO4 does not stain PAN but stains, amongst many others, polymers containing an amide moiety.


Irriga ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Marco Antonio Fonseca Conceição ◽  
Rubens Duarte Coelho

RELAÇÃO VAZÃO x PRESSÃO EM MICROASPERSORES DAN 2001 SOB CONDIÇÃO ADVERSA DE OPERAÇÃO  Marco Antônio Fonseca ConceiçãoEmbrapa Uva e Vinho, Estação Experimental de Jales, Jales, SP. CP 241. CEP 15700-000.E-mail: [email protected] Duarte CoelhoDepartamento de Engenharia Rural, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP. CP 09, CEP 13418-900.E-mail: [email protected]  1 RESUMO  Alguns microaspersores possuem membranas que regulam a sua pressão de operação, mantendo a vazão praticamente estável dentro de uma faixa de pressão na rede hidráulica. Operadores de irrigação no campo, muitas vezes com baixo nível de instrução e sem orientação profissional qualificada, visando reduzir problemas de entupimento ou para diminuir o tempo de irrigação, costumam retirar as membranas autocompensantes para aumentar a vazão do emissores, o que pode comprometer o desempenho hidráulico do sistema. Para avaliar o efeito da retirada da membrana  sobre as vazões dos microaspersores, no presente trabalho determinou-se as relações entre pressão e vazão para sete bocais do microaspersor DAN 2001, operando na ausência da membrana autocompensante. As curvas pressão-vazão sem as membranas autocompensantes apresentaram comportamento potencial com expoentes variando entre 0,58 e 0,64. As vazões dos microaspersores sem as membranas aumentaram de forma inversamente proporcional aos diâmetros dos emissores, quando comparadas às vazões nominais com as membranas.  UNITERMOS: Hidráulica, irrigação, microaspersão.  CONCEIÇÃO, M.A.F.; COELHO, R.D. FLOW X PRESSURE RELATIONSHIP FOR DAN 2001 MICROSPRINKLERS UNDER ADVERSE CONDITION  2 ABSTRACT  Many types of microsprinklers have a self-compensating membrane to regulate their pressure, keeping a stable flow. Many producers usually take the membranes off to reduce clogging problems  or irrigation time. This procedure could endanger the system hydraulic performance. To evaluate the effect of taking off the self-compensating membrane from microsprinklers it was determined, in the present work, the pressure-flow relationship for seven Dan 2001 microsprinkler nozzles operating without the membrane. The pressure-flow curves presented a potential behavior with the exponents varying from 0.58 to 0.64. Microsprinkler flows without the membranes increased inversely proportional to the emitter diameters, comparing to the nominal flows using the membranes.  KEYWORDS: Hydraulic, irrigation, microsprinkler.


Sign in / Sign up

Export Citation Format

Share Document