Measurement of Structural Parameters Based on X-Ray Emission Spectra with Energy-Dispersive Detection

2016 ◽  
Vol 59 (2) ◽  
pp. 198-201
Author(s):  
V. P. Gavrilenko ◽  
A. V. Zablotskii ◽  
S. A. Korneichuk ◽  
A. Yu. Kuzin ◽  
T. A. Kupriyanova ◽  
...  
1971 ◽  
Vol 15 ◽  
pp. 197-208
Author(s):  
Hubert K. Chow

Energy dispersive x-ray analysis has become an extremely useful analytical tool. The technique provides for the direct observation of x-ray emission spectra, eliminating the need for a dispersive crystal. The purpose of this reported investigation was to study the use of the technique with a simple pulse height analyzing system and to develop a routine method for correcting Interferences due to adjacent element spectral overlap and matrix effects.The analyzing system consists of a radioisotope source, a lithium drifted silicon detector, a preamplifier, an amplifier, two single channel analyzers and two digital ratemeters. In order to obtain results suitable for quantative measurement, a two-step empirical method was employed for the correction of peak overlapping and matrix effects. If two peaks in a spectrum overlap at their tails, one can set up a channel width of the analyzer to a region where there are no overlapping pulses. It is then possible to calibrate the ratio of the intensity obtained from this channel to that obtained from the whole peak in its pure state, i.e. without the appearance of a neighbor peak. The actual intensity of the peak in the overlapping spectrum is, therefore, the observed counts multiplied by the ratio. The next step is the correction of matrix effect by means of conventional empirical methods using standard samples. Two types of the samples, Zn-Cu powder mixtures and Ee-Cu in aqueous solutions, were studied to illustrate this method. The usefulness of applying the analyzing system and technique to industrial measurements, either on-line or batch, will also be discussed.


1980 ◽  
Vol 7 (1) ◽  
pp. 101 ◽  
Author(s):  
DO Huett ◽  
RC Menary

The aluminium distribution in transverse sections of fractured and freeze-dried roots of cabbage, lettuce and kikuyu grass was studied by energy-dispersive X-ray analysis. The mean ratios of the integrated counts corresponding to Kα emission spectra for aluminium, phosphorus and silicon were recorded between aluminium and control treatments over three experiments. Peak-to-back- ground ratios (PA/B) were calculated and the aluminium ratios corrected for variations in the corresponding total silicon ratios. Aluminium was found to be uniformly distributed along roots of the three species. The highest peaks (PA) and peak-to-background ratios, suggesting higher concentrations, were recorded in the epidermis followed by the cortex. Aluminium was recorded in the stele of all species and in the protoplasm of cortical cells, with smaller amounts in the protoplasm of xylem parenchyma cells for lettuce and kikuyu grass. The distribution of aluminium supports the hypothesis that its entry to the stele can be achieved by transport both into meristematic cells and the symplasm via the cortex and hence bypassing the barrier at the endodermis. The latter evidence was supported by the presence of aluminium in the radial wall (and cytoplasm) of the endodermis for each species. There was a poor correlation between the distribution of aluminium and phosphorus.


1972 ◽  
Vol 16 ◽  
pp. 74-89 ◽  
Author(s):  
Manfred O. Krause

AbstractPhotoelectron spectrometry is shown to be an excellent technique for the analysis of x rays in the ultrasoft and soft x-ray regions. X rays are converted into photoelectrons which are ejected from a suitable atomic level, and the photoelectrons are analyzed with an electron spectrometer. The method is energy dispersive, provides a resolution ranging from 0.1 eV at 20 eV to 1.1 eV at 3 keV, and gives well-defined intensity characteristics throughout the range. The energy range can be extended into the 10 keV decade. Properties of the new technique are discussed, compared with conventional techniques, and exemplified by a series of measurements which include determination of the emission spectra of M x rays of yttrium to rhodium, L x rays of zirconium, and the band structures of molybdenum and holmium.


1973 ◽  
Vol 21 (6) ◽  
pp. 580-586 ◽  
Author(s):  
E. W. DEMPSEY ◽  
F. J. AGATE ◽  
M. LEE ◽  
M. L. PURKERSON

X-ray emission spectra have been recorded from several biologic tissues using a multichannel energy-dispersive analyzer with a retractible semiconductor detector coupled to a Cambridge Mark II scanning electron microscope. Particular attention has been given to the detection of silver in experimental argyria, of calcium in dermoid scales and in experimental necrosis of the kidney and of sulfur in the inner and outer portions of reptilian skin. Sulfur and chlorine have been found associated with silver in argyria. Phosphorus was associated with calcium both in the dermal scales and in necrotic areas. In addition to these elements, trace amounts of copper, zinc, lead, sodium, potassium, iron, arsenic, osmium and uranium have been detected in various normal and experimental situations. The applicability of the combined instrument to cytochemical problems is briefly discussed.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Author(s):  
Y. Y. Wang ◽  
H. Zhang ◽  
V. P. Dravid ◽  
H. Zhang ◽  
L. D. Marks ◽  
...  

Azuma et al. observed planar defects in a high pressure synthesized infinitelayer compound (i.e. ACuO2 (A=cation)), which exhibits superconductivity at ~110 K. It was proposed that the defects are cation deficient and that the superconductivity in this material is related to the planar defects. In this report, we present quantitative analysis of the planar defects utilizing nanometer probe xray microanalysis, high resolution electron microscopy, and image simulation to determine the chemical composition and atomic structure of the planar defects. We propose an atomic structure model for the planar defects.Infinite-layer samples with the nominal chemical formula, (Sr1-xCax)yCuO2 (x=0.3; y=0.9,1.0,1.1), were prepared using solid state synthesized low pressure forms of (Sr1-xCax)CuO2 with additions of CuO or (Sr1-xCax)2CuO3, followed by a high pressure treatment.Quantitative x-ray microanalysis, with a 1 nm probe, was performed using a cold field emission gun TEM (Hitachi HF-2000) equipped with an Oxford Pentafet thin-window x-ray detector. The probe was positioned on the planar defects, which has a 0.74 nm width, and x-ray emission spectra from the defects were compared with those obtained from vicinity regions.


Author(s):  
Michael E. Rock ◽  
Vern Kennedy ◽  
Bhaskar Deodhar ◽  
Thomas G. Stoebe

Cellophane is a composite polymer material, made up of regenerated cellulose (usually derived from wood pulp) which has been chemically transformed into "viscose", then formed into a (1 mil thickness) transparent sheet through an extrusion process. Although primarily produced for the food industry, cellophane's use as a separator material in the silver-zinc secondary battery system has proved to be another important market. We examined 14 samples from five producers of cellophane, which are being evaluated as the separator material for a silver/zinc alkaline battery system in an autonomous underwater target vehicle. Our intent was to identify structural and/or chemical differences between samples which could be related to the functional differences seen in the lifetimes of these various battery separators. The unused cellophane samples were examined by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Cellophane samples were cross sectioned (125-150 nm) using a diamond knife on a RMC MT-6000 ultramicrotome. Sections were examined in a Philips 430-T TEM at 200 kV. Analysis included morphological characterization, and EDS (for chemical composition). EDS was performed using an EDAX windowless detector.


Sign in / Sign up

Export Citation Format

Share Document