scholarly journals Stevia rebaudiana germplasm characterization using microsatellite markers and steviol glycosides quantification by HPLC

Author(s):  
Maria Margarida Ribeiro ◽  
Tatiana Diamantino ◽  
Joana Domingues ◽  
Ílio Montanari ◽  
Marcos Nopper Alves ◽  
...  

AbstractStevia rebaudiana Bertoni, Asteraceae, is an herbaceous perennial plant native to Paraguay. This species is considered since ancient times a medicinal plant with important bioactive compounds and pharmacologic and food properties, namely diterpenes glycosides. The high natural sweetener potential stevioside and rebaudioside A produced by S. rebaudiana plants are suitable sucrose substitutes, and their obtention is influenced by environmental, phytosociological, and genetic factors. The plants’ genetic profile and sweet potential depiction are needed for suitable plant selection for improvement and deployment. Thirty-one S. rebaudiana accessions grown in the same plot where leaves samples were collected in early 2019, were genotyped using six microsatellite markers, including two steviol glycosides biosynthesis functionally involved markers. Additionally, an aqueous extract of each sample was obtained in a water bath and purified by SPE for stevioside and rebaudioside A quantification by normal phase HPLC. Stevioside and rebaudioside A contents varied between 0.53–7.36% (w w−1) and 0.37–3.60% (w w−1), respectively. Two genotypes displayed interesting ratios of rebaudioside A/stevioside (number 3 and 33). The level of genetic similarity between genotypes was tested through a pairwise similarity coefficient, and two groups of individuals had the same fingerprinting. Strong relatedness was found within genotypes, possibly due to cloning, thus, influx of new germplasm ought to be made to prevent mating between relatives, and for further selection and genetic improvement.

2011 ◽  
Vol 91 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Ashok Kumar Yadav ◽  
S. Singh ◽  
D. Dhyani ◽  
P. S. Ahuja

Yadav, A. K., Singh, S., Dhyani, D. and Ahuja, P. S. 2011. A review on the improvement of Stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 91: 1–27. Stevia rebaudiana (Bertoni) is a herbaceous perennial plant (2n=22) of genus Stevia Cav., which consists of approximately 230 species of herbaceous, shrub and sub-shrub plants. Leaves of stevia produce diterpene glycosides (stevioside and rebaudiosides), non-nutritive, non-toxic, high-potency sweeteners and may substitute sucrose as well as other synthetic sweetners, being 300 times sweeter than sucrose. In addition to its sweetening property, it has medicinal values and uses. Stevia is self-incompatible plant and the pollination behaviour is entomophilous. Rebaudioside-A is of particular interest among the glycosides produced in the leaves of stevia because of the most desirable flavour profile, while, stevioside is responsible for aftertaste bitterness. Development of new varieties of S. rebaudiana with a higher content of rebaudioside-A and a reduced content of stevioside is the primary aim of plant breeders concerned with the improvement and utilization of this source of natural sweeteners. The proportions of rebaudioside-A and -C are controlled by a single additive gene known to be co-segregating suggesting synthesis by the same enzyme. Stevioside and rebaudioside-A are negatively correlated, while rebaudioside-A and -C are positively correlated. Conventional plant breeding approaches such as selection and intercrossing among various desirable genotypes is the best method for improving quality traits in a highly cross-pollinated crop like stevia. Various plant types with larger amounts of specific glycoside have already been patented, such as RSIT 94-1306, RSIT 94-75, RSIT 95-166-1 through selection and intercrossing. Composites and synthetics can be used to capture part of the available heterosis because of the high degree of natural out-crossing and the absence of an efficient system of pollination control. Synthetics and composites like “AC Black Bird” and “PTA-444” have already been developed. Polyploidy results in better adaptability of individuals and increased organ and cell sizes. Tetraploids have larger leaf size, thickness and have potential use in increasing biomass and yield in comparison with diploid strains. Characters of interest with low variability in the population may be improved through mutation breeding. Use of biotechnological approaches, such as tissue culture for the mass propagation of elite genotypes, anther culture for development of pure homozygous doubled haploid and molecular marker technology for identification of marker loci linked to rebaudioside-A trait, can create new opportunities for plant breeders. Understanding the mechanism and pathway of biosynthesis of steviol glycosides can help to improve the glycoside profile by up-regulation and down-regulation of genes.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


2017 ◽  
Vol 31 (1) ◽  
pp. 139-144
Author(s):  
Irma Aranda-González ◽  
David Betancur-Ancona ◽  
Luis Chel-Guerrero ◽  
Yolanda Moguel-Ordóñez

Abstract Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g−1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Cecilia Prata ◽  
Laura Zambonin ◽  
Benedetta Rizzo ◽  
Tullia Maraldi ◽  
Cristina Angeloni ◽  
...  

Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance.


2018 ◽  
Vol 46 (2) ◽  
pp. 73-77
Author(s):  
Réka Czinkóczky ◽  
Áron Németh

Abstract Stevia rebaudiana Bertoni is a small, perennial and herbaceous shrub which originated in Paraguay (South America). Stevia rebaudiana is not native to Hungary but its cultivation and consumption may have many benefits, e.g. to reduce blood pressure and as a non-caloric sweetener. Steviol glycosides, mostly stevioside and rebaudioside A, located in the leaves are about 200–300 times sweeter than sucrose. S. rebaudina cultivation in Hungary would offer many opportunities in healthcare and the sweet industry. With the aim of achieving good green biomass yields, the effect of MACC4 autotrophic and heterotrophic algae strains was investigated by testing them as both leaf and soil fertilizers in the soil of Stevia rebaudiana seedlings and in its aqueous rooting experiments. In one of the later set up, the formation of roots was improved by combining the application of red light and algae treatment.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 547
Author(s):  
Enrique Combatt Caballero ◽  
Jaime Hernández Burgos ◽  
Alfredo Jarma-Orozco ◽  
Juan Jaraba Navas ◽  
Luis Rodríguez Páez

This study was conducted to determine the effect of edaphic environmental conditions in the concentration of principal steviol glycosides and Stevia rebaudiana Bert yield, utilizing leaves from five Colombian regions. The structure of the experiment was a randomized complete block design with two treatments in a 5 × 2 factorial arrangement (5 locations × 2 radiation levels). In each experimental unit (UE), five healthy plants of similar physiological growth age were selected for the extraction of total glycosides (GT), stevioside (Stv), rebaudioside A (Rb-A),and leaf yield. Results were analyzed with the SAS statistical package (version 9.1). Concentrations of total glycosides and rebaudioside A showed a positive effect with the increase of nitrogen (N), phosphorus (P), magnesium (Mg), and copper (Cu). Therefore, they are important in the available phase of the soil to obtain an increase in these glycosides. Meanwhile, boron (B) presented a negative correlation under these conditions. For the production of stevioside, N, Mg, manganese (Mn) had a positive correlation, and calcium (Ca) and sodium (Na) had a negative correlation. Similarly, for leaf yields by locality, it was found that N, Ca, Mg, and B have a positive correlation with leaf production, while Mg, Mn, and iron (Fe) negatively correlate with biomass gain.The cultivation of stevia can be established in different soil conditions, precipitation and solar radiation in Colombia. Therefore, it is necessary to advance fertilization plans with these nutrients, considering the response of these metabolites to their application.


Author(s):  
Supriyadi . ◽  
Siswandono . ◽  
Mochammad Yuwono

<p><strong>Objective</strong><strong>:</strong><strong> </strong>To develop and validate a selective HPLC-ELSD method for determination of steviol glycosides contained in <em>Stevia rebaudiana</em>, mainly stevioside, rebauside A, rebaudioside C, and dulcoside A. <strong></strong></p><p><strong>Methods: </strong>The chromatographic separation of stevioside, rebaudioside A, rebaudioside C, and dulcoside A was achieved using Phenomenex Luna column 250 mm x 4.6 mm i.d. in isocratic system mode with a mobile phase of acetonitrile-water (35: 65). The temperature of nebulization and evaporization of the ELS detector was set at 50 <sup>o</sup>C and 70 <sup>o</sup>C, respectively.<strong></strong></p><p><strong>Results: </strong>The good separation of stevioside, rebaudioside A, rebaudioside C, and dulcoside A was obtained, yielding the resolution of all the analytes more than 1.5. All the validation parameters like specificity, linearity, range, accuracy and precision met the acceptance criteria according to ICH guidelines.<strong></strong></p><p><strong>Conclusion: </strong>The proposed HPLC-ELSD method is simple and sensitive for the simultaneously detection and determination of stevioside, rebaudioside A, rebaudioside C and dulcoside A contained in <em>Stevia rebaudiana</em>. The method was successfully applied for the determination of the samples product of <em>Stevia rebaudiana</em>.</p><p><strong>Keywords: </strong>Stevioside, Rebaudioside A, Rebaudioside C, Dulcoside A, HPLC-ELSD</p>


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10173
Author(s):  
Luis G. Sarmiento-López ◽  
Melina López-Meyer ◽  
Gabriela Sepúlveda-Jiménez ◽  
Luis Cárdenas ◽  
Mario Rodríguez-Monroy

In plants, phosphorus (P) uptake occurs via arbuscular mycorrhizal (AM) symbiosis and through plant roots. The phosphate concentration is known to affect colonization by AM fungi, and the effect depends on the plant species. Stevia rebaudiana plants are valuable sources of sweetener compounds called steviol glycosides (SGs), and the principal components of SGs are stevioside and rebaudioside A. However, a detailed analysis describing the effect of the phosphate concentration on the colonization of AM fungi in the roots and the relationship of these factors to the accumulation of SGs and photochemical performance has not been performed; such an analysis was the aim of this study. The results indicated that low phosphate concentrations (20 and 200 µM KH2PO4) induced a high percentage of colonization by Rhizophagus irregularis in the roots of S. rebaudiana, while high phosphate concentrations (500 and 1,000 µM KH2PO4) reduced colonization. The morphology of the colonization structure is a typical Arum-type mycorrhiza, and a mycorrhiza-specific phosphate transporter was identified. Colonization with low phosphate concentrations improved plant growth, chlorophyll and carotenoid concentration, and photochemical performance. The transcription of the genes that encode kaurene oxidase and glucosyltransferase (UGT74G1) was upregulated in colonized plants at 200 µM KH2PO4, which was consistent with the observed patterns of stevioside accumulation. In contrast, at 200 µM KH2PO4, the transcription of UGT76G1 and the accumulation of rebaudioside A were higher in noncolonized plants than in colonized plants. These results indicate that a low phosphate concentration improves mycorrhizal colonization and modulates the stevioside and rebaudioside A concentration by regulating the transcription of the genes that encode kaurene oxidase and glucosyltransferases, which are involved in stevioside and rebaudioside A synthesis in S. rebaudiana.


2018 ◽  
Vol 18 (4) ◽  
pp. 664 ◽  
Author(s):  
Yohanes Martono ◽  
Suryasatriya Trihandaru ◽  
Ferdy Semuel Rondonuwu

Rebaudioside A and stevioside are abundant steviol glycoside contained in Stevia rebaudiana leaves. These components are widely used as a natural sweetener. The objective of this study was to develop rapid determination method of stevioside, and rebaudioside A in S. rebaudiana leaves using near infrared trans-reflectance spectroscopy (NIRS) combined with multivariate analysis. The reference method used was HPLC. A prediction model was developed using partial least square (PLS) regression. Calibration parameters were calculated based on a calibration set of various stevioside, rebaudioside A from 23 samples. Performance of PLS model was assessed in term of optimum determination coefficient (R2), and minimum root mean square error of cross-validation (RMSEV). Validation of PLS model was performed using cross-validation and leave one out calibration of PLS component. Rebaudioside A has well PLS model in wavenumber region of 4100–5100 cm-1, and stevioside determination using difference wavenumber region of 4760-5016 cm-1. PLS model for total (sum of stevioside and rebaudioside A content) was exploited in wavenumber region of 4568-4928 cm-1. NIRS in combination with multivariate data analysis of PLSR can be applied as a rapid method for determining rebaudioside A and the total amount of steviol glycosides in S. rebaudiana leaves.


2016 ◽  
Vol 8 (4) ◽  
pp. 1953-1958
Author(s):  
Neena Kumari ◽  
R. C. Rana ◽  
Y. P. Sharma ◽  
Suresh Kumar

In the present investigation, the dynamics of steviol glycosides (stevioside and rebaudioside-A) of Stevia rebaudiana with their growth stages were studied. The study aimed to examine the best stage of harvesting (month of the year) the crop with respect to maximum accumulation of stevioside and rebaudioside-A content in different plant parts (leaves, green stem and woody stem). The results showed that the maximum stevioside content in leaves (8.55%) was found in June month (vegetative stage). Rebaudioside-A content in leaves (7.00%) was at its peak in August (vegetative stage). Whereas, higher stevioside and rebaudioside-A content was found for green stem (0.93%) and woody stem (0.18%) during September month (flowering stage). Leaves showed maximum yields of stevioside (17.60g) and rebaudioside-A (13.75g) per plant in July month. The study indicated that it is economical to harvest the leaves of S. rebaudiana rather than harvesting whole aerial biomass in vegetative phase (July month).


Sign in / Sign up

Export Citation Format

Share Document