Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway

2012 ◽  
Vol 107 (3) ◽  
pp. 487-501 ◽  
Author(s):  
Ke Sai ◽  
Shuzhen Wang ◽  
Veerakumar Balasubramaniyan ◽  
Charles Conrad ◽  
Frederick F. Lang ◽  
...  
2021 ◽  
pp. 112637
Author(s):  
Aderonke Ajayi-Smith ◽  
Pauline van der Watt ◽  
Nonkululeko Mkwanazi ◽  
Sarah Carden ◽  
John O. Trent ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163768 ◽  
Author(s):  
Wei Zhu ◽  
Liang Ye ◽  
Jianzhao Zhang ◽  
Pengfei Yu ◽  
Hongbo Wang ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4083-4083 ◽  
Author(s):  
Xingyi Kuang ◽  
Jie Xiong ◽  
Weili Wang ◽  
Xinyao Li ◽  
Tingting Lu ◽  
...  

Abstract The serine/threonine PIM protein kinases are critical regulators of turmorigenesis in mutiple hematologic malignancies and solid cancers. We used real-time PCR to detect the expression of PIM in B-cell acute lymphocytic leukemia (B-ALL) patients, and found the expression of PIM in B-ALL patients was significantly higher than that in normal controls. SMI-4a is a pan-PIM small molecule inhibitor, and this agent exhibits demonstrable preclinical antitumour activity in a wide range of hematologic malignant cell lines. To further explore the effect of SMI-4a on B-ALL cells, B-ALL cell lines CCRF-SB and Sup-B15 were treated with this small molecule inhibitor, and the results showed that SMI-4a inhibited B-ALL cell proliferation in a dose- and time-dependent manner. Moreover, SMI-4a significantly promoted B-ALL cell apoptosis and caused cell cycle arrest in the G0/G1 phase. The results of Western blot showed that SMI-4a increased the expression of Caspase-3, Caspase-9, Bax and P21, and decreased the expression of Bcl-2 and CDK4. Furthermore, we found that SMI-4a significantly inhibits the activation of the JAK2/STAT3 pathway and HO-1 interferes with the JAK2/STAT3 pathway to inhibit SMI-4a-induced ALL cell apoptosis. Finally, xenograft experiments in NOD/SCID mice were operated to investigate the potential role of SMI-4a in B-ALL tumorigenesis in vivo. To observe the effect of SMI-4a on tumor growth in vivo, NOD/SCID mice were transplanted with B-ALL devied cells, and the tumor-bearing mice were intraperitoneally injected with saline and SMI-4a, respectively. As a result, tretment with SMI-4a resulted in a significant inhibition on tumor growth. In addition, PIM inhibtor obviously reduced the volume and weight of B-ALL cell-derived tumors. TUNEL assay revealed the proportion of apoptotic cells was higher in the SMI-4a-treated group than in the control group. Taken together, our data showed PIM inhibitor (SMI-4a) significantly inhibits the growth of B-ALL cells in vitro and in vivo and promotes apoptosis and cell cycle arrest. This suppressive effect is mediated partly through inhibiting the JAK2/STAT3 pathway activation. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 8 (4) ◽  
pp. 893-903 ◽  
Author(s):  
Naoki Ashimori ◽  
Benjamin D. Zeitlin ◽  
Zhaocheng Zhang ◽  
Kristy Warner ◽  
Ilan M. Turkienicz ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2422-2422
Author(s):  
Georgios V. Georgakis ◽  
Yang Li ◽  
George Z. Rassidakis ◽  
L. Jeffrey Medeiros ◽  
Anas Younes

Abstract Conventional chemotherapy is the golden standard for therapy of Hodgkin Lymphoma (HL). Nevertheless, considerable toxicity and secondary malignancies indicate the need for targeted therapy that preferentially kills the malignant cells. The molecular chaperone heat shock protein 90 (HSP90) is expressed in all mammalian cells, but it is overexpressed in malignancy. 17-AAG, a small molecule inhibitor of HSP90, has been shown to induce apoptosis and cell cycle arrest in a variety of tumor types. In the present study we show that HSP90 is overexpressed in the primary Hodgkin and Reed-Sternberg (HRS) cells, as well as in HL derived cells lines. Inhibition of HSP90 17-AAG showed antiproliferative effect in HL derived cell lines in a dose dependent manner. Cell death was due to apoptosis, as determined by Annexin-V staining and FACS analysis. Apoptosis was mediated by the activation of the caspase pathway, especially by caspase 8, 9, and 3. Inhibition of caspase activity by the pancaspase inhibitor Z-VAD-FMK partially reversed the 17-AAG lethal effect. 17-AAG had no significant on the level of the antiapoptotic Bcl-2 family members or the cellular or X-Linked inhibitors of apoptosis. In contrast, there was considerable degradation of cFLIP. Moreover, 17-AAG treatment reduced the intracellular levels of molecules that have been shown to be of key importance in HRS cell survival and proliferation, including AKT and the phosphorylated ERK1/2, but with minimal change in total ERK1/2. Cell cycle arrest was observed at G0/G1 or at G2/M phase, and was mediated by reduction in the levels of MDM2, cyclin D1 with cdk4 and cdk6, and cyclin B1. The potential synergy of 17-AAG with conventional chemotherapy and anti-TRAIL death receptor monoclonal antibody, was explored by the simultaneous incubation of HL derived cells with both doxorubicin or antibodies against TRAIL receptors R1 and R2, respectively. The combination of 17-AAG with doxorubicin or anti-TRAIL antibodies was significantly more effective than either agent alone. Based on these data we are conducting a phase II study of 17-AAG in patients with relapsed classical HL.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3043
Author(s):  
Ahmed Elwakeel ◽  
Anissa Nofita Sari ◽  
Jaspreet Kaur Dhanjal ◽  
Hazna Noor Meidinna ◽  
Durai Sundar ◽  
...  

We previously performed a drug screening to identify a potential inhibitor of mortalin–p53 interaction. In four rounds of screenings based on the shift in mortalin immunostaining pattern from perinuclear to pan-cytoplasmic and nuclear enrichment of p53, we had identified MortaparibPlus (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) as a novel synthetic small molecule. In order to validate its activity and mechanism of action, we recruited Luminal-A breast cancer cells, MCF-7 (p53wild type) and T47D (p53L194F) and performed extensive biochemical and immunocytochemical analyses. Molecular analyses revealed that MortaparibPlus is capable of abrogating mortalin–p53 interaction in both MCF-7 and T47D cells. Intriguingly, upregulation of transcriptional activation function of p53 (as marked by upregulation of the p53 effector gene—p21WAF1—responsible for cell cycle arrest and apoptosis) was recorded only in MortaparibPlus-treated MCF-7 cells. On the other hand, MortaparibPlus-treated T47D cells exhibited hyperactivation of PARP1 (accumulation of PAR polymer and decrease in ATP levels) as a possible non-p53 tumor suppression program. However, these cells did not show full signs of either apoptosis or PAR-Thanatos. Molecular analyses attributed such a response to the inability of MortaparibPlus to disrupt the AIF–mortalin complexes; hence, AIF did not translocate to the nucleus to induce chromatinolysis and DNA degradation. These data suggested that the cancer cells possessing enriched levels of such complexes may not respond to MortaparibPlus. Taken together, we report the multimodal anticancer potential of MortaparibPlus that warrants further attention in laboratory and clinical studies.


2018 ◽  
Vol 25 (5) ◽  
pp. 585-594.e7 ◽  
Author(s):  
Kenichi Shimada ◽  
Eduard Reznik ◽  
Michael E. Stokes ◽  
Lakshmi Krishnamoorthy ◽  
Pieter H. Bos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document