scholarly journals PFK15, a Small Molecule Inhibitor of PFKFB3, Induces Cell Cycle Arrest, Apoptosis and Inhibits Invasion in Gastric Cancer

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163768 ◽  
Author(s):  
Wei Zhu ◽  
Liang Ye ◽  
Jianzhao Zhang ◽  
Pengfei Yu ◽  
Hongbo Wang ◽  
...  
2021 ◽  
pp. 112637
Author(s):  
Aderonke Ajayi-Smith ◽  
Pauline van der Watt ◽  
Nonkululeko Mkwanazi ◽  
Sarah Carden ◽  
John O. Trent ◽  
...  

2012 ◽  
Vol 107 (3) ◽  
pp. 487-501 ◽  
Author(s):  
Ke Sai ◽  
Shuzhen Wang ◽  
Veerakumar Balasubramaniyan ◽  
Charles Conrad ◽  
Frederick F. Lang ◽  
...  

2009 ◽  
Vol 8 (4) ◽  
pp. 893-903 ◽  
Author(s):  
Naoki Ashimori ◽  
Benjamin D. Zeitlin ◽  
Zhaocheng Zhang ◽  
Kristy Warner ◽  
Ilan M. Turkienicz ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2422-2422
Author(s):  
Georgios V. Georgakis ◽  
Yang Li ◽  
George Z. Rassidakis ◽  
L. Jeffrey Medeiros ◽  
Anas Younes

Abstract Conventional chemotherapy is the golden standard for therapy of Hodgkin Lymphoma (HL). Nevertheless, considerable toxicity and secondary malignancies indicate the need for targeted therapy that preferentially kills the malignant cells. The molecular chaperone heat shock protein 90 (HSP90) is expressed in all mammalian cells, but it is overexpressed in malignancy. 17-AAG, a small molecule inhibitor of HSP90, has been shown to induce apoptosis and cell cycle arrest in a variety of tumor types. In the present study we show that HSP90 is overexpressed in the primary Hodgkin and Reed-Sternberg (HRS) cells, as well as in HL derived cells lines. Inhibition of HSP90 17-AAG showed antiproliferative effect in HL derived cell lines in a dose dependent manner. Cell death was due to apoptosis, as determined by Annexin-V staining and FACS analysis. Apoptosis was mediated by the activation of the caspase pathway, especially by caspase 8, 9, and 3. Inhibition of caspase activity by the pancaspase inhibitor Z-VAD-FMK partially reversed the 17-AAG lethal effect. 17-AAG had no significant on the level of the antiapoptotic Bcl-2 family members or the cellular or X-Linked inhibitors of apoptosis. In contrast, there was considerable degradation of cFLIP. Moreover, 17-AAG treatment reduced the intracellular levels of molecules that have been shown to be of key importance in HRS cell survival and proliferation, including AKT and the phosphorylated ERK1/2, but with minimal change in total ERK1/2. Cell cycle arrest was observed at G0/G1 or at G2/M phase, and was mediated by reduction in the levels of MDM2, cyclin D1 with cdk4 and cdk6, and cyclin B1. The potential synergy of 17-AAG with conventional chemotherapy and anti-TRAIL death receptor monoclonal antibody, was explored by the simultaneous incubation of HL derived cells with both doxorubicin or antibodies against TRAIL receptors R1 and R2, respectively. The combination of 17-AAG with doxorubicin or anti-TRAIL antibodies was significantly more effective than either agent alone. Based on these data we are conducting a phase II study of 17-AAG in patients with relapsed classical HL.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3043
Author(s):  
Ahmed Elwakeel ◽  
Anissa Nofita Sari ◽  
Jaspreet Kaur Dhanjal ◽  
Hazna Noor Meidinna ◽  
Durai Sundar ◽  
...  

We previously performed a drug screening to identify a potential inhibitor of mortalin–p53 interaction. In four rounds of screenings based on the shift in mortalin immunostaining pattern from perinuclear to pan-cytoplasmic and nuclear enrichment of p53, we had identified MortaparibPlus (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) as a novel synthetic small molecule. In order to validate its activity and mechanism of action, we recruited Luminal-A breast cancer cells, MCF-7 (p53wild type) and T47D (p53L194F) and performed extensive biochemical and immunocytochemical analyses. Molecular analyses revealed that MortaparibPlus is capable of abrogating mortalin–p53 interaction in both MCF-7 and T47D cells. Intriguingly, upregulation of transcriptional activation function of p53 (as marked by upregulation of the p53 effector gene—p21WAF1—responsible for cell cycle arrest and apoptosis) was recorded only in MortaparibPlus-treated MCF-7 cells. On the other hand, MortaparibPlus-treated T47D cells exhibited hyperactivation of PARP1 (accumulation of PAR polymer and decrease in ATP levels) as a possible non-p53 tumor suppression program. However, these cells did not show full signs of either apoptosis or PAR-Thanatos. Molecular analyses attributed such a response to the inability of MortaparibPlus to disrupt the AIF–mortalin complexes; hence, AIF did not translocate to the nucleus to induce chromatinolysis and DNA degradation. These data suggested that the cancer cells possessing enriched levels of such complexes may not respond to MortaparibPlus. Taken together, we report the multimodal anticancer potential of MortaparibPlus that warrants further attention in laboratory and clinical studies.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 302 ◽  
Author(s):  
Xin Zhang ◽  
Yao Qin ◽  
Zhaohai Pan ◽  
Minjing Li ◽  
Xiaona Liu ◽  
...  

The main chemical component of cannabis, cannabidiol (CBD), has been shown to have antitumor properties. The present study examined the in vitro effects of CBD on human gastric cancer SGC-7901 cells. We found that CBD significantly inhibited the proliferation and colony formation of SGC-7901 cells. Further investigation showed that CBD significantly upregulated ataxia telangiectasia-mutated gene (ATM) and p53 protein expression and downregulated p21 protein expression in SGC-7901 cells, which subsequently inhibited the levels of CDK2 and cyclin E, thereby resulting in cell cycle arrest at the G0–G1 phase. In addition, CBD significantly increased Bax expression levels, decreased Bcl-2 expression levels and mitochondrial membrane potential, and then upregulated the levels of cleaved caspase-3 and cleaved caspase-9, thereby inducing apoptosis in SGC-7901 cells. Finally, we found that intracellular reactive oxygen species (ROS) increased after CBD treatment. These results indicated that CBD could induce G0–G1 phase cell cycle arrest and apoptosis by increasing ROS production, leading to the inhibition of SGC-7901 cell proliferation, thereby suggesting that CBD may have therapeutic effects on gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document