Influence of deposition time on the optical and morphological properties of silver–copper thin films: experimental and statistical studies

2021 ◽  
Vol 53 (5) ◽  
Author(s):  
Razia Noorbakhsh ◽  
Sahar Rezaee ◽  
Borhan Arghavani Nia ◽  
Arash Boochani
2015 ◽  
Vol 77 (1) ◽  
Author(s):  
Farhana Aziz ◽  
Ahmad Fauzi Ismail

This paper investigated the effect of spray deposition time on optical and morphological properties of P3HT: PCBM thin films. The effects of spray deposition time on the optical and morphological properties of thin films were investigated using optical microscopy, UV-Vis spectrophotometry and atomic force microscopy (AFM). The AFM spectra show that the thin films prepared at 10s spray deposition time are more uniform while the 15s and 20s samples presented coffee ring shapes with inhomogeneous surface formation. The ridge-like features can be observed in the surface for all samples and become more pronounced with increasing spray deposition time. The root mean square (RMS) roughness of the samples increased with increasing spray deposition time. Based on the absorption results, it is concluded that higher spray coating times result in lower crystallinity of the thin film. The 10 s spray deposition time is the most suitable deposition time for producing thin films with good morphology and crystallinity for polymer solar cells (PSCs) with improved power conversion efficiency (PCE).


2011 ◽  
Vol 18 (01n02) ◽  
pp. 11-15 ◽  
Author(s):  
K. ASHOK

Nickel oxide ( NiO ) thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering of a Ni target in an Ar / O 2 mixture. The effect of thickness (0.2 μm, 0.4 μm and 1 μm) on the structural and surface morphological properties of NiO thin films was investigated. These films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The films were cubic NiO , with preferred orientation in the (111) direction at lower deposition time (10 mins). At higher deposition time (60 mins) the preferred orientation shifted to (200) plane. Electrochemical behavior of NiO thin films for different thickness samples were analyzed between the electrode potential ‑0.2 and 0.8 V vs scanning calomel electrode (SCE) in both anodic and cathodic directions and the current responses were measured.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
N. Chabou ◽  
B. Birouk ◽  
M.S. Aida ◽  
J.P. Raskin

AbstractNanocrystalline zinc sulfide (ZnS) thin films are prepared on glass substrates by chemical bath deposition (CBD) method using aqueous solutions of zinc chloride, thiourea ammonium hydroxide along with non-toxic complexing agent tri-sodium citrate in alkaline medium at 80 °C. The deposition time and annealing effects on the optical and morphological properties are studied. The morphological, compositional, and optical properties of the films are investigated by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDAX) and UV-Vis spectroscopy. SEM micrographs exhibit uniform surface coverage. UV-Vis (300 nm to 800 nm) spectrophotometric measurements show transparency of the films (transmittance ranging from 69 % to 81 %), with a direct allowed energy band gap in the range of 3.87 eV to 4.03 eV. After thermal annealing at 500 °C for 120 min, the transmittance increases up to 87 %.


2021 ◽  
pp. 1-17
Author(s):  
Ezenwaka, L. N. ◽  
Okoli, N. L. ◽  
Okereke, N. A. ◽  
Ezenwa, I. A. ◽  
Nwori, N. A.

Time optimized cobalt-doped zinc selenide thin films have been successfully electrodeposited on fluorine-doped tin oxide substrates. The films were deposited at the varying time of 1 min, 3 mins, and 5 mins respectively. Film thickness, optical, structural, electrical, and morphological properties of the deposited thin films were evaluated. Film thickness estimated using the gravimetric method increased from 294.35 nm to 399.62 nm as deposition time increased. Optical properties showed that the absorbance of the films ranged from 13.58% to 83.15% and was found to increase as deposition time increased. Transmittance ranged from 24.40% to 73.15% and was found to decrease as deposition time increased. The reflectance of the films was found to be low while the energy band gap ranged between 2.10 eV and 2.85 eV. Structural properties confirmed the deposition of ZnSe thin film with crystallite size values that fall between 14.68 nm and 18.60 nm. Dislocation density is ranged from 4.66 × 1015 lines/m2 to 2.97 × 1015 lines/m2 while microstrain ranged between 8.53 × 10-3 and 5.83 × 10-3. Crystallite sizes of the films were found to increase as deposition time increased while dislocation density and microstrain were found to decrease as deposition time increased. Electrical properties showed that the deposited films are semiconducting films with electrical resistivity values of 1.54 × 105 Ω cm-1.83 × 104 Ω cm and electrical conductivity values of 6.30 × 10-6 S/cm-5.47 × 10-5 S/cm. The micrograph of the films showed that the films were made up of nanoparticles and nanofibres of different dimensions. Energy-Dispersive X-Ray Spectroscopy (EDS) spectra of the films confirmed the presence of cobalt, zinc, and selenium.


Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1409
Author(s):  
Ofelia Durante ◽  
Cinzia Di Giorgio ◽  
Veronica Granata ◽  
Joshua Neilson ◽  
Rosalba Fittipaldi ◽  
...  

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250–1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.


2018 ◽  
Vol 17 (03) ◽  
pp. 1760039
Author(s):  
K. M. Dhanisha ◽  
M. Manoj Christopher ◽  
M. Abinaya ◽  
P. Deepak Raj ◽  
M. Sridharan

The present work deals with NiO/Si3N4 layers formed by depositing nickel oxide (NiO) thin films over silicon nitrate (Si3N[Formula: see text] thin films. NiO films were coated on Si3N4-coated Si substrate using magnetron sputtering method by changing duration of coating time and were analyzed using X-ray diffractometer, field emission-scanning electron microscopy, UV–Vis spectrophotometer and four-point probe method to study the influence of thickness on physical properties. Crystallinity of the deposited films increases with increase in thickness. All films exhibited spherical-like structure, and with increase in deposition time, grains are coalesced to form smooth surface morphology. The optical bandgap of NiO films was found to decrease from 3.31[Formula: see text]eV to 3.22[Formula: see text]eV with upsurge in the thickness. The film deposited for 30[Formula: see text]min exhibits temperature coefficient resistance of [Formula: see text]1.77%/[Formula: see text]C as measured at 80[Formula: see text]C.


Sign in / Sign up

Export Citation Format

Share Document