scholarly journals Herbivore-induced volatile emissions are altered by soil legacy effects in cereal cropping systems

2020 ◽  
Vol 455 (1-2) ◽  
pp. 171-186
Author(s):  
Shealyn C. Malone ◽  
David K. Weaver ◽  
Tim F. Seipel ◽  
Fabian D. Menalled ◽  
Megan L. Hofland ◽  
...  

Abstract Aims (main purpose and research question) Soil properties, including microbial composition and nutrient availability, can influence the emissions of plant volatile organic compounds (VOCs) that serve as host-location cues for insect pests and their natural enemies. Agricultural practices have profound effects on soil properties, but how these influence crop VOCs remains largely unknown. The aim of this study was to investigate the effect of agricultural practices on constitutive and herbivore-induced VOC emissions by a major staple crop through soil legacy effects. Methods In a full factorial experiment, we measured VOC emissions by wheat (Triticum aestivum) grown in soil inoculum from wheat-fallow or wheat-cover crop rotations that was subjected to feeding by larval Cephus cinctus. Results (main findings) Under herbivory, plants grown in cover crop inoculum emitted greater total VOCs, including higher concentrations of 2-pentadecanone, an insect repellent, and nonanal, a compound important in the recruitment of natural enemies. Plants grown in fallow inoculum showed no differences in emissions whether under herbivory or not. Soil inoculum did not influence VOC emissions of plants in the absence of larval feeding. Conclusions These results suggest that agricultural practices influence crop VOC emissions through soil legacy effects. Additionally, crops grown in wheat-fallow rotations may be less successful recruiting natural enemies of pests through herbivore-induced VOC signaling. Abbreviations Volatile organic compounds (VOCs); herbivore-induced plant volatiles (HIPV); green leaf volatiles (GLVs); northern Great Plains (NGP); wheat stem sawfly (WSS); gas chromatography-mass spectrometry (GC-MS); non-metric multidimensional scaling (NMDS); generalized linear mixed-effects model (GLMM).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Y. Song ◽  
H. Chun

AbstractVolatile organic compounds (VOCs) are secondary pollutant precursors having adverse impacts on the environment and human health. Although VOC emissions, their sources, and impacts have been investigated, the focus has been on large-scale industrial sources or indoor environments; studies on relatively small-scale enterprises (e.g., auto-repair workshops) are lacking. Here, we performed field VOC measurements for an auto-repair painting facility in Korea and analyzed the characteristics of VOCs emitted from the main painting workshop (top coat). The total VOC concentration was 5069–8058 ppb, and 24–35 species were detected. The VOCs were mainly identified as butyl acetate, toluene, ethylbenzene, and xylene compounds. VOC characteristics differed depending on the paint type. Butyl acetate had the highest concentration in both water- and oil-based paints; however, its concentration and proportion were higher in the former (3256 ppb, 65.5%) than in the latter (2449 ppb, 31.1%). Comparing VOC concentration before and after passing through adsorption systems, concentrations of most VOCs were lower at the outlets than the inlets of the adsorption systems, but were found to be high at the outlets in some workshops. These results provide a theoretical basis for developing effective VOC control systems and managing VOC emissions from auto-repair painting workshops.


2021 ◽  
Vol 13 (12) ◽  
pp. 6570
Author(s):  
Asma Akter Parlin ◽  
Monami Kondo ◽  
Noriaki Watanabe ◽  
Kengo Nakamura ◽  
Mizuki Yamada ◽  
...  

The quantitative understanding of the transport behavior of volatile organic compounds (VOCs) in near-surface soils is highly important in light of the potential impacts of soil VOC emissions on the air quality and climate. Previous studies have suggested that temperature changes affect the transport behavior; however, the effects are not well understood. Indeed, much larger changes in the VOC flux under in situ dynamic temperatures than those expected from the temperature dependence of the diffusion coefficients of VOCs in the air have been suggested but rarely investigated experimentally. Here, we present the results of a set of experiments on the upward vertical vapor-phase diffusive transport of benzene and trichloroethylene (TCE) in sandy soils with water contents ranging from an air-dried value to 10 wt% during sinusoidal temperature variation between 20 and 30 °C. In all experiments, the flux from the soil surface was correlated with the temperature, as expected. However, the changes in flux under wet conditions were unexpectedly large and increased with increasing water content; they were also larger for TCE, the volatility of which depended more strongly on the temperature. Additionally, the larger flux changes were accompanied by a recently discovered water-induced inverse correlation between temperature and flux into the overlying soil. These results demonstrated that the flux changes of VOCs under dynamic temperatures could be increased by volatilization-dissolution interactions of VOCs with water. Future extensive studies on this newly discovered phenomenon would contribute to a better understanding of the impacts of soil VOC emissions on the air quality and climate.


2020 ◽  
Vol 20 (23) ◽  
pp. 15101-15125
Author(s):  
W. Joe F. Acton ◽  
Zhonghui Huang ◽  
Brian Davison ◽  
Will S. Drysdale ◽  
Pingqing Fu ◽  
...  

Abstract. Mixing ratios of volatile organic compounds (VOCs) were recorded in two field campaigns in central Beijing as part of the Air Pollution and Human Health in a Chinese Megacity (APHH) project. These data were used to calculate, for the first time in Beijing, the surface–atmosphere fluxes of VOCs using eddy covariance, giving a top-down estimation of VOC emissions from a central area of the city. The results were then used to evaluate the accuracy of the Multi-resolution Emission Inventory for China (MEIC). The APHH winter and summer campaigns took place in November and December 2016 and May and June 2017, respectively. The largest VOC fluxes observed were of small oxygenated compounds such as methanol, ethanol + formic acid and acetaldehyde, with average emission rates of 8.31 ± 8.5, 3.97 ± 3.9 and 1.83 ± 2.0 nmol m−2 s−1, respectively, in the summer. A large flux of isoprene was observed in the summer, with an average emission rate of 5.31 ± 7.7 nmol m−2 s−1. While oxygenated VOCs made up 60 % of the molar VOC flux measured, when fluxes were scaled by ozone formation potential and peroxyacyl nitrate (PAN) formation potential the high reactivity of isoprene and monoterpenes meant that these species represented 30 % and 28 % of the flux contribution to ozone and PAN formation potential, respectively. Comparison of measured fluxes with the emission inventory showed that the inventory failed to capture the magnitude of VOC emissions at the local scale.


RSC Advances ◽  
2021 ◽  
Vol 11 (19) ◽  
pp. 11714-11723
Author(s):  
Jiries Meehan-Atrash ◽  
Wentai Luo ◽  
Kevin J. McWhirter ◽  
David G. Dennis ◽  
David Sarlah ◽  
...  

Cannabinoid and VOC emissions from vaping cannabis concentrates vary depending on terpene content, power level and consumption method.


2018 ◽  
Author(s):  
Marwa Majdi ◽  
Karine Sartelet ◽  
Grazia Maria Lanzafame ◽  
Florian Couvidat ◽  
Youngseob Kim ◽  
...  

Abstract. This work aims at quantifying the relative contribution of secondary organic aerosol (SOA) precursors emitted by wildfires to organic aerosol (OA) formation, during summer 2007 over the Euro-Mediterranean region, where intense wild-fires occurred. A new SOA formation mechanism, H2Oaro, including recently identified aromatic volatile organic compounds (VOCs) emitted from wildfires is developed based on smog chamber experiment measurements, under low and high-NOx regimes. The aromatic VOCs included in the mechanism are toluene, xylene, benzene, phenol, cresol, catechol, furan, naphthalene, methylnaphthalene, syringol, guaiacol and structurally assigned and unassigned compounds with at least 6 carbon atoms per molecule (USC>6). This mechanism H2Oaro is an extension of the H2O (Hydrophilic/Hydrophobic organic) aerosol mechanism: the oxidation of the precursor forms surrogate species with specific thermodynamic properties (volatility, oxidation degree, affinity to water). The SOA concentrations over the Euro-Mediterranean region in summer 2007 are simulated using the chemistry transport model (CTM) Polair3D of the air-quality plateform Polyphemus, where the mechanism H2Oaro was implemented. To estimate the relative contribution of the aromatic VOCs, intermediate, semi and low volatile organic compounds (I/S/L-VOCs) to wildfires OA concentrations, different estimations of the gaseous I/S/L-VOC emissions (from primary organic aerosol (POA) using a factor of 1.5 or from non-methanic organic gas (NMOG) using a factor of 0.36) and their ageing (one-step oxidation vs multi-generational oxidation), are also tested in the CTM.Most of the particle organic aerosol (OA) concentrations are formed from I/S/L-VOCs. In average during the summer 2007 and over the Euro-Mediterranean domain, they are about 10 times higher than the OA concentrations formed from VOCs. However, locally, the OA concentrations formed from VOCs can represent up to 30 % of the OA concentrations from biomass burning. Amongst the VOCs, the main contributors to SOA formation are phenol, benzene and catechol (47 %), USC>6 compounds (23 %), and toluene and xylene (12 %). Sensitivity studies of the influence of the VOCs and the I/S/L-VOCs emissions and chemical ageing mechanisms on PM2.5 concentrations show that surface PM2.5 concentrations are more sensitive to the parameterization used for gaseous I/S/L-VOCs emissions than for ageing. Estimating the gaseous I/S/L-VOCs emissions from POA or from NMOG has a high impact on local surface PM2.5 concentrations (reaching −30 % in Balkans, −8 to −16 % in the fire plume and +8 to +16 % in Greece). Considering the VOC emissions results in a moderate increase of PM2.5 concentrations mainly in Balkans (up to 24 %) and in the fire plume (+10 %).


Author(s):  
Zdeněk Jergl

The contribution refers to the problems of long-lasting emissions of VOC (volatile organic compounds) emitted from surface finishing furniture components. Furniture is one of the sources of VOC (volatile organic compounds) in living and working environment. By long-lasting affecting on a human body, higher emission concentrations of VOC in interior can cause health problems.Time is a significant factor influencing the number of VOC (volatile organic compounds) emitted from surface finishing furniture components. The number of long-term emissions was examined in particular phases of production of furniture components.The comparison was focused on a difference in surface finishing of furniture components with water-diluted materials and solvent lacquer materials.The compound of water-diluted materials and solvent lacquer materials has an effect of a quantity of emitted VOC.The quantitative and qualitative determination of VOC emissions from lacquer materials is the result of the carried out analyses.


Author(s):  
Menglei Wang ◽  
Rencheng Zhu ◽  
Ruiqin Zhang ◽  
Shunyi Li ◽  
Xiaofeng Bao

On-road tailpipe volatile organic compounds (VOCs) were sampled from light-duty diesel trucks compliant with Euro III to V, and a total of 102 VOC species were quantified. The composition characteristics and carbon number distributions were investigated, and the contribution of individual VOC to ozone formation potentials (OFPs) was weighted. Results showed that alkanes were the major VOC species, accounting for approximately 65.5%. VOC emissions decreased significantly as the standards became stricter, especially for alkanes and aromatics; and the VOC emissions on highway were much lower than those on urban roads. Carbon number distribution of VOCs was mainly concentrated in C3-C4 and C10-C12. Aromatics were the major contributors to ozone formation, taking up 49.3-57.6% of the total OFPs, and naphthalene, 1-butene, dodecane, 1,2,3-trimethylbenzene and 2-propenal were the top five species. The information provided insight into the tailpipe VOC emission characteristics, and may help decision makers drafting related emission policies.


2019 ◽  
Vol 944 ◽  
pp. 1208-1214
Author(s):  
Shan Shan Liu ◽  
Ji Yue Hu ◽  
Dan Qin ◽  
Ling Ling Gao ◽  
Ye Chen ◽  
...  

VOCs emissions from recycled PET are recognized as one of the major causes of poor healthy condition. Much attention has been increasingly focused on VOCs produced from regenerated PET for their significance in ecological safety. These emissions may be strongly influenced by the raw materials and manufacturing techniques of the recycled PET. However, there is very little published information regarding this issue. The purpose of this study was to examine VOCs releasing from reprocessed productions when exposed to high temperature or other extreme conditions.In this study, we determined and compared VOCs emissions from samples after different manufacturing stages such as PET popcorn, dried PET popcorn, screw melts, undrawed fibers and drawed fibers, including their species and content. To simulate the VOC emissions of samples processed with the high temperature in longer time during screw melting, we investigated VOCs from screw melts utilizing Thermo Gravimetric-Mass Spectrometry (TG-MS) with 90 min in 280°C . We found that: (1) The optimisation of the equilibration procedure for volatile organic compounds was performed and the optimal equilibration conditions were determined to be 30 min at 120°C ; (2) Seven individual VOCs were identified: considerable VOC content changes during the manufacturing process; and the drying was tremendously helpful in reducing the VOC emissions from PET popcorn; formaldehyde, acetaldehyde and TVOC were reduced by 24%, 58% and 50%, respectively after drying; while acetaldehyde, benzene, benzaldehyde and TVOC increased dramatically after screw melting; (3) The VOCs were released at the initial stage of heat preservation (about 5 min) and VOCs content came to the maximum which indicated the almost immediate thermal degradation in screw melting.


2018 ◽  
Author(s):  
Congbo Song ◽  
Yan Liu ◽  
Shida Sun ◽  
Luna Sun ◽  
Yanjie Zhang ◽  
...  

Abstract. Vehicular emission is a key contributor to ambient volatile organic compounds (VOCs) and NOx in Chinese megacities. However, the information of real-world emission factors (EFs) for a typical urban fleet is still limited, hindering the development of a more reliable emission inventory in China. Based on a more-than-two-week (August 8–24, 2017) tunnel test in urban Tianjin in northern China, and on the use of a statistical regression model, the Positive Matrix Factorization (PMF) receptor model, and the Calculate Emissions from Road Transport (COPERT) IV model, characteristics of vehicular VOCs-NOx-CO emissions were analyzed systematically. The fleet-average EFs (pollutant: downslope, upslope, and overall in mg km−1 veh−1) were estimated respectively as follows: (NO: 61.92 ± 72.46, 158.58 ± 73.48, 97.52 ± 69.84), (NO2: 16.52 ± 11.49, 23.98 ± 20.14, 15.86 ± 9.38), (NOx: 79.45 ± 78.43, 181.22 ± 88.29, 116.56 ± 77.61), and (CO: 269.96 ± 342.38, 577.76 ± 382.22, 344.67 ± 250.01). The EFs of NO-NO2-NOx and CO from heavy-duty vehicles (or diesel vehicles) were differentiated from light-duty vehicles (or gasoline vehicles). The ratios (v / v) of NO2 to NOx in the primary vehicular exhaust were approximately 0.18 ± 0.09, 0.10 ± 0.22 and 0.10 ± 0.05 for downslope, upslope, and the entire tunnel, respectively. The fleet-average EF of the 99-target non-methane VOCs (NMVOCs) was 40.56 ± 12.18 mg km−1 veh−1, lower than the previous studies in China. The BTEX (benzene, toluene, ethylbenzene, p-xylene, m-xylene and o-xylene) levels decreased by approximately 79 % when emission standards increased from China I to China V. The source profiles of NMVOCs from the tailpipe and evaporative emissions were resolved by the PMF model. The evaporative emissions accounted for nearly one-half of the total vehicular VOC emissions, indicating that evaporative and tailpipe emissions contributed equally to VOC emissions. The relative contributions of evaporative NMVOC emissions to total vehicular NMVOC emissions are temperature-dependent with the average increasing ratio of 7.55 % °C−1. The primary emission ratio (ER, m / m) of VOCs / NOx was approximately 2.04, suggesting that vehicular NOx and VOCs can be co-emitted with a proper ER. According to the vehicular ERs of VOCs / NOx in Tianjin (2000–2016) and China (2010–2030), as even more stringent emission standards are implemented in the future, the O3 chemical regimes were likely to be VOCs-limited (i.e., 8 : 1 threshold) for cities or regions where VOCs and NOx emissions are dominated by vehicular exhaust. Our study enriched the database on the fleet-average emission factors of on-road vehicles for emission inventory, air quality modeling, and health effects studies, provided implications for following O3 control in China from the view of primary emission, and highlighted the importance of further control of evaporative emissions.


Sign in / Sign up

Export Citation Format

Share Document