Analysis of ginsenoside content, functional genes involved in ginsenosides biosynthesis, and activities of antioxidant enzymes in Panax quinquefolium L. adventitious roots by fungal elicitors

2016 ◽  
Vol 43 (4) ◽  
pp. 2415-2432 ◽  
Author(s):  
Jinxin Li ◽  
Hongfa Li ◽  
Dahui Liu ◽  
Shujie Liu ◽  
Jianli Li ◽  
...  
2006 ◽  
Vol 49 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Jung-Yeon Han ◽  
Su-Jin Jung ◽  
Sang-Woo Kim ◽  
Yong-Soo Kwon ◽  
Myong-Jong Yi ◽  
...  

2015 ◽  
Vol 67 (4) ◽  
pp. 1277-1284 ◽  
Author(s):  
Monika Sienkiewicz ◽  
Anna Głowacka ◽  
Edward Kowalczyk ◽  
Ewa Kochan

Ginsenosides can be isolated from various cultures of Panax quinquefolium L., American ginseng. The aim of the study was to determine the antibacterial activity of extracts from leaves, stalks, hairy root cultures and field roots of P. quinquefolium L. containing ginsenosides against Staphylococcus aureus isolates obtained from various clinical materials. The agar well diffusion assay was used to evaluate microbial growth inhibition at various concentrations of extracts. The susceptibility of the clinical isolates to recommended antibiotics was determined with the disk-diffusion method. The results showed that the tested extracts inhibited the growth of all S. aureus clinical isolates, including MRSA (methicillin-resistant S. aureus) with MIC values ranging from 0.5 mg/mL to 1.7 mg/mL. The level of antimicrobial activity of extracts depends on the ginsenoside content. Both field roots and hairy root cultures represent excellent sources of these metabolites. Extracts with ginsenosides were found to inhibit multidrug-resistant staphylococci and can be a valuable complement to antistaphylococcal therapy.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 785 ◽  
Author(s):  
Kim-Cuong Le ◽  
Thanh-Tam Ho ◽  
Jong-Du Lee ◽  
Kee-Yoeup Paek ◽  
So-Young Park

Panax ginseng Mayer is a perennial herb that has been used as a medicinal plant in Eastern Asia for thousands of years. The aim of this study was to enhance root biomass and ginsenoside content in cultured adventitious roots by colchicine mutagenesis. Adventitious P. ginseng roots were treated with colchicine at different concentrations (100, 200, and 300 mg·L−1) and for different durations (1, 2, and 3 days). Genetic variability of mutant lines was assessed using random amplification of polymorphic DNA (RAPD) analysis. Ginsenoside biosynthesis gene expression, ginsenoside content, enzyme activities, and performance in bioreactor culture were assessed in four mutant lines (100–1-2, 100–1-18, 300–1-16, and 300–2-8). The results showed that ginsenoside productivity was enhanced in all mutant lines, with mutant 100–1-18 exhibiting the most pronounced increase (4.8-fold higher than the control). Expression of some ginsenoside biosynthetic enzymes was elevated in mutant lines. Enzyme activities varied among lines, and lipid peroxidation activity correlated with root biomass. All four lines were suitable for bioreactor cultivation, with mutant 100–1-18 exhibiting the highest biomass after culture scale-up. The results indicated that colchicine mutagenesis of P. ginseng roots increased biomass and ginsenosides production. This technique, and the root lines produced in this study, may be used to increase industrial yields of P. ginseng biomass and ginsenosides.


2016 ◽  
Vol 37 (2) ◽  
pp. 567 ◽  
Author(s):  
Cristina Ferreira Larré ◽  
Caroline Leivas Moraes ◽  
Junior Borella ◽  
Luciano Do Amarante ◽  
Sidnei Deuner ◽  
...  

This study aimed to evaluate the mechanisms of flood tolerance of the root system of Erythrina crista-galli L. plants by measuring the activity of antioxidant enzymes and oxidative stress components in the leaves and roots. Additionally, the activity of fermentation enzymes in the roots was measured. The following two treatments were used: plants with flooded roots, which were maintained at a given water level above the soil surface, and non-flooded plants, which were used as the control. The measurements were performed at 10, 20, 30, 40, and 50 days after treatment. The following parameters were evaluated at each time-point: the activities of superoxide dismutase, catalase and ascorbate peroxidase, the quantification of lipid peroxidation and hydrogen peroxide (H2O2) content in the leaves, roots, and adventitious roots, and the activities of lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase in both the primary and adventitious roots. There was an increase in the activity of catalase and ascorbate peroxidase in the leaves to maintain stable H2O2 levels, which reduced lipid peroxidation. In the roots, higher activity of all antioxidant enzymes was observed at up to 30 days of flooding, which favoured both reduced H2O2 levels and lipid peroxidation. Activity of the fermentation enzymes was observed in the primary roots from the onset of the stress conditions; however, their activity was necessary only in the adventitious roots during the final periods of flooding. In conclusion, E. crista-galli L. depends on adventitious roots and particularly on the use of the fermentation pathway to tolerate flood conditions.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3491 ◽  
Author(s):  
Wei Chen ◽  
Prabhu Balan ◽  
David G Popovich

Recently Panax ginseng has been grown as a secondary crop under a pine tree canopy in New Zealand (NZ). The aim of the study is to compare the average content of ginsenosides from NZ-grown ginseng and its original native locations (China and Korea) grown ginseng. Ten batches of NZ-grown ginseng were extracted using 70% methanol and analyzed using LC-MS/MS. The average content of ginsenosides from China and Korea grown ginseng were obtained by collecting data from 30 and 17 publications featuring China and Korea grown ginseng, respectively. The average content of total ginsenosides in NZ-grown ginseng was 40.06 ± 3.21 mg/g (n = 14), which showed significantly (p < 0.05) higher concentration than that of China grown ginseng (16.48 ± 1.24 mg/g, n = 113) and Korea grown ginseng (21.05 ± 1.57 mg/g, n = 106). For the individual ginsenosides, except for the ginsenosides Rb2, Rc, and Rd, ginsenosides Rb1, Re, Rf, and Rg1 from NZ-grown ginseng were 2.22, 2.91, 1.65, and 1.27 times higher than that of ginseng grown in China, respectively. Ginsenosides Re and Rg1 in NZ-grown ginseng were also 2.14 and 1.63 times higher than ginseng grown in Korea. From the accumulation of ginsenosides, New Zealand volcanic pumice soil may be more suitable for ginseng growth than its place of origin.


Sign in / Sign up

Export Citation Format

Share Document