scholarly journals Correction to: Integrative effects of stress- and stress tolerance-inducing elicitors on in vitro bioactive compounds of ajowan [Trachyspermum ammi (L.) Sprague] medicinal plant

Author(s):  
Mohsen Niazian ◽  
Mehdi Soltani Howyzeh ◽  
Seyed Ahmad Sadat-Noori
2021 ◽  
Author(s):  
Mohsen Niazian ◽  
Mehdi Soltani Howyzeh ◽  
Seyed Ahmad Sadat-Noori

Abstract Bioactive compounds of medicinal plants have a wide range of applications in pharmaceutical, food and other industries. In vitro culture systems have great potential for sustainable production of bioactive compounds of medicinal plants. In the present study, the individual and combined effects of a stress tolerance-inducing (salicylic acid) and a stress-inducing elicitor (polyethylene glycol) were evaluated on regeneration efficiency, antioxidants activity and phytochemical profile of in vitro shoot cultures of ajowan. Different concentrations of salicylic acid (SA) (0, 10, 20, 40, 80 µM) and polyethylene glycol (PEG 6000) (0, 1, 2, 5%) were added to the shoot regeneration Murashige and Skoog medium containing Kin (1.5 mg/L) and NAA (0.25 mg/L) plant growth regulators. Salicylic acid reduced the adverse effect of PEG treatment on number of regenerated shoots and in vitro rooting. The activities of catalase, superoxide dismutase, and peroxidase enzymatic antioxidants were significantly increased in SA + PEG treated plants. The gas chromatography-mass spectrometry (GC-MS)-profiling revealed quantitative and qualitative phytochemical differences between control and SA + PEG treated plants. The greatest means of p-cymene and thymol bioactive compounds were obtained from in vitro shoots treated with 5% PEG + 40 µM SA. The inter-simple sequence repeats (ISSR) markers proved the genetic stability of in vitro regenerated plants. The presented protocol is useful for large-scale sustainable production of secondary metabolites (SMs) of medicinal plants. The same strategy (stress tolerance-inducing elicitor + stress-inducing elicitor) is applicable to increase valuable SMs in other production systems such as hydroponic, greenhouse and field conditions.


Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


Author(s):  
Waras Nurcholis ◽  
Edy Djauhari Purwakusumah ◽  
Mono Rahardjo ◽  
Latifah K. Darusman

Temulawak (Curcuma  xanthorrhizaRoxb.) belongs to the family Zingiberaceae, has been empirically used as herbal medicines. The research was aimed to evaluate three promising lines of Temulawak based on their high bioactive contents (xanthorrhizol and curcuminoid) and its in vitro bioactivity (antioxidant and toxicity), and to obtain information on agrobiophysic environmental condition which produced high bioactive compounds. The xanthorrhizol and curcuminoid contents were measured by HPLC. In vitro antioxidant and toxicity were determined by DPPH (1,1-diphenyl-2-picryl-hydrazyl) method and BSLT (Brine Shrimp Lethality Test). The result showed that promising line A produced the highest yield of bioactive and bioactivity, i.e. 0.157 and 0.056 g plant-1of xanthorrizol and curcuminoid respectively. The IC50 of antioxidant activity was 65.09 mg L-1and LC50of toxicity was 69.05 mg L-1. In this study, Cipenjo had the best temulawak performance than two other locations. According to the agrobiophysic parameters, Cipenjo environmental condition was suitable for temulawak cultivation with temperature 28-34 ºC, rainfall ± 223.97 mm year-1 and sandy clay soil. Keywords: antioxidant, curcuminoid, promising lines, temulawak, xanthorrhizol


2018 ◽  
pp. 47-52

Epimedium elatum (Morren & Decne) of family Berberidaceace is a rare perennial medicinal plant, endemic to high altitude forests of Northwestern Himalayas in India. Ethnobotanically, it has been used as an ingredient for treatment of bone-joint disorders, impotence and kidney disorders in Kashmir Himalayas. Phytochemically, it is rich in Epimedin ABC and Icariin; all of these have been demonstrated to possess remarkable biological activities like PDE-5 inhibition (treatment of erectile dysfunction), anticancer, antiosteoporosis antioxidant and antiviral properties. The present investigation reports its traditional usage, comprehensive distribution and conservation status from twenty ecogeographical regions in Kashmir Himalayas, India. The species was reported from Gurez valley for the first time. Numerous threats like excessive grazing, deforestration, habitat fragmentation, tourism encroachment, landslides and excessive exploitation have decreased its natural populations in most of the surveyed habitats. Consequently, its existence may become threatened in near future if timely conservation steps are not taken immediately by concerned stakeholders involved in medicinal plant research. Moreover, use of plant tissue culture techniques is recommended for development of its in vitro propagation protocols. Therefore, introduction of this medicinal plant in botanical gardens, protected sites and development of monitoring programmes are needed for its immediate conservation in Northwestern Himalayas, India.


Author(s):  
Joshi Vedamurthy ◽  
Shivakumar Inamdar ◽  
Ankit Acharya ◽  
Rajesh Kowti

In this project, in vitro absorption enhancement activity of P-gp substrates Fexofenadine (Fx) and Ciprofloxacin (Cp) were evaluated in everted rat gut sac model and Caco-2 cell lines. Verapamil was used as P-gp inhibitor. Piper betel, Trachyspermum ammi, Plumbago zeylanica, Trikatu, Moringaoleifera, Murraya koenigii,  Ferulafoitida  Zingiber officinale, Cheilocostus speciosus, Capsicum frutescens Operculina turpethum Holarrhena antidysenterica Mesuaferrea, Tinospora cordifolia,  and Picrorhiza kurroa, were selected and extracted with 99% alcohol and fresh juices of Citrus limon, Punica granatum seeds were also studied. In-vitro studies depicted that Fexofenadine and Ciprofloxacin absorption was increased greater than 20% in the presence of Operculinaturpethum, Capsicum frutescens, Holarrhena Antidysenterica, Tinospora cordifolia, Trikatu, Trachyspermum ammi, Plumbago zeylanica. The flux of the ciprofloxacin transport was in the range of 9-23 mcg/min and Papp         2.6 × 10-5 cm/sec to 4.1 × 10-5  cm/sec whereas Fexofenadine flux was in the range of 2-7.7 mcg/min and Papp 4.16 × 10–6 cm/sec to 1.62 ×       10-5 cm/sec.  In vitro antimicrobial activity of ciprofloxacin on selected microbes in presence of extracts also depicted synergistic activity. Histological studies revealed that there is no significant variation observed in the isolated sac in presence of the extracts. CaCo2 cell lines studies showed that, formulation enhanced the absorption of fexofenadine greater than 50%. Tablets were prepared and evaluated using the plant extracts which yielded >20% absorption enhancement of the substrates. In conclusion, tablet formulation containing the alcoholic extracts of Trachyspermum ammi, Plumbago zylanicum, Capsicum frutescens, Operculina turpethum, Holarrhena Antidysenterica, Tinospora cordifolia and Trikatu can act as an absorption enhancer for fexofenadine and ciprofloxacin. The mechanism of action of these herbs could be due to    P-gp inhibition. Further clinical studies are needed to prove its efficacy in humans.     


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Sign in / Sign up

Export Citation Format

Share Document