scholarly journals A Cox Process with State-Dependent Exponential Pulses to Model Rainfall

Author(s):  
Nadarajah I Ramesh ◽  
Gayatri Rode ◽  
Christian Onof

AbstractA point process model based on a class of Cox processes is developed to analyse precipitation data at a point location. The model is constructed using state-dependent exponential pulses that are governed by an unobserved underlying Markov chain. The mathematical formulation of the model where both the arrival rate of the rain cells and the initial pulse depth are determined by the Markov chain is presented. Second-order properties of the rainfall depth process are derived and utilised in model assessment. A method of moment estimation is employed in model fitting. The proposed model is used to analyse 69 years of sub-hourly rainfall data from Germany and 15 years of English rainfall data. The results of the analysis using variants of the proposed model with fixed pulse lifetime and variable pulse duration are presented. The performance of the proposed model, in reproducing second-moment characteristics of the rainfall, is compared with that of two stochastic models where one has exponential pulses and the other has rectangular pulses. The proposed model is found to capture most of the empirical rainfall properties well and outperform the two alternative models considered in our analysis.

2021 ◽  
Vol 13 (6) ◽  
pp. 3314
Author(s):  
Rawan Shabbar ◽  
Anemone Kasasbeh ◽  
Mohamed M. Ahmed

Optimal placement of Charging stations (CSs) and infrastructure planning are one of the most critical challenges that face the Electric Vehicles (EV) industry nowadays. A variety of approaches have been proposed to address the problem of demand uncertainty versus the optimal number of CSs required to build the EV infrastructure. In this paper, a Markov-chain network model is designed to study the estimated demand on a CS by using the birth and death process model. An investigation on the desired number of electric sockets in each CS and the average number of electric vehicles in both queue and waiting times is presented. Furthermore, a CS allocation algorithm based on the Markov-chain model is proposed. Grey Wolf Optimization (GWO) algorithm is used to select the best CS locations with the objective of maximizing the net profit under both budget and routing constraints. Additionally, the model was applied to Washington D.C. transportation network. Experimental results have shown that to achieve the highest net profit, Level 2 chargers need to be installed in low demand areas of infrastructure implementation. On the other hand, Level 3 chargers attain higher net profit when the number of EVs increases in the transportation network or/and in locations with high charging demands.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


1958 ◽  
Vol 39 (3) ◽  
pp. 129-136 ◽  
Author(s):  
C. W. Newton ◽  
Sey Katz

By means of hourly rainfall data from the Hydroclimatic Network, the motions of large rainstorms, of the kind associated with squall lines, are examined in relation to the winds aloft. Very little correlation is found between the speed of movement of the rainstorms and the wind speed at any level, although the fastest moving storms were associated with strong winds aloft. Significant correlation is found between direction of motion of rainstorms, and wind direction at 700 mb or higher levels. On the average, the rainstorms move with an appreciable component toward right of the wind direction. The difference between these results, and those from other studies based on small precipitation areas, is ascribed to propagation. The mechanism involved is discussed briefly.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
A. B. Vallejo-Mora ◽  
M. Toril ◽  
S. Luna-Ramírez ◽  
M. Regueira ◽  
S. Pedraza

UpLink Power Control (ULPC) is a key radio resource management procedure in mobile networks. In this paper, an analytical model for estimating the impact of increasing the nominal power parameter in the ULPC algorithm for the Physical Uplink Shared CHannel (PUSCH) in Long Term Evolution (LTE) is presented. The aim of the model is to predict the effect of changing the nominal power parameter in a cell on the interference and Signal-to-Interference-plus-Noise Ratio (SINR) of that cell and its neighbors from network statistics. Model assessment is carried out by means of a field trial where the nominal power parameter is increased in some cells of a live LTE network. Results show that the proposed model achieves reasonable estimation accuracy, provided uplink traffic does not change significantly.


2014 ◽  
Vol 18 (1) ◽  
pp. 353-365 ◽  
Author(s):  
U. Haberlandt ◽  
I. Radtke

Abstract. Derived flood frequency analysis allows the estimation of design floods with hydrological modeling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices regarding precipitation input, discharge output and consequently the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets and to propose the most suitable approach. Event based and continuous, observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output, short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in northern Germany with the hydrological model HEC-HMS (Hydrologic Engineering Center's Hydrologic Modeling System). The results show that (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, and (III) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the application for derived flood frequency analysis.


Author(s):  
Debarun Bhattacharjya ◽  
Tian Gao ◽  
Dharmashankar Subramanian

In multivariate event data, the instantaneous rate of an event's occurrence may be sensitive to the temporal sequence in which other influencing events have occurred in the history. For example, an agent’s actions are typically driven by preceding actions taken by the agent as well as those of other relevant agents in some order. We introduce a novel statistical/causal model for capturing such an order-sensitive historical dependence, where an event’s arrival rate is determined by the order in which its underlying causal events have occurred in the recent past. We propose an algorithm to discover these causal events and learn the most influential orders using time-stamped event occurrence data. We show that the proposed model fits various event datasets involving single as well as multiple agents better than baseline models. We also illustrate potentially useful insights from our proposed model for an analyst during the discovery process through analysis on a real-world political event dataset.


2012 ◽  
pp. 51-71
Author(s):  
Mazen Ali ◽  
Sherah Kurnia ◽  
Robert B. Johnston

Inter-organizational Systems (IOS) cannot be adopted by any organizations in isolation from their trading partner. Their adoption requires cooperation and collaboration between trading partners and, therefore, is reliant on the nature of relationships between the parties involved. For organizations to progress in their IOS adoption, improvement in relationships between trading partners is required before they can adopt a more sophisticated IOS. In addition, through IOS adoption, trading partners can actually improve their relationships overtime. There has been some research that investigates relationships and how organizations progress from one level to the next level of adoption. However, these studies do not clearly define the concepts of relationship, IOS adoption and IOS adoption maturity. Furthermore, they do not adequately justify the exclusion of other variables in defining the relevant concepts and are not theoretically based. This research extends the Kurnia and Johnston (2000) process model of IOS adoption by incorporating the notion of IOS adoption maturity and reducing the scope from a supply chain to a dyadic level to enable better evaluations of IOS adoption progression. We argue that with the proposed model, the dynamics of IOS adoption maturity can be better examined empirically.


Author(s):  
Guillermo Infante Hernández ◽  
Aquilino A. Juan Fuente ◽  
Benjamín López Pérez ◽  
Edward Rolando Núñez-Valdéz

Software platforms for e-government transactions may differ in developed functionalities, languages and technologies, hardware platforms, and operating systems that support them. Those differences can be found among public organizations that share common processes, services, and regulations. This scenario hinders interoperability between these organizations. Hence, to find a technique for integrating these platforms becomes a necessity. In this chapter, a rule-based domain-specific modeling environment for public services and process integration is suggested, which consists of common identified public service elements and a set of process integration rules. This approach provides the needed integration or interoperability pursued in this domain. Furthermore a service and process model is proposed to formalize the information needed for integration of both. A set of integration rules is also presented as part of the modeling environment. This set of integration rules completes the proposed model to meet the business requirements of this domain.


Sign in / Sign up

Export Citation Format

Share Document