Surface composition and catalytic activity of an iron mining residue for simultaneous degradation of sulfonamide antibiotics

2019 ◽  
Vol 27 (2) ◽  
pp. 1710-1720
Author(s):  
Saidy C. Ayala-Durán ◽  
Peter Hammer ◽  
Raquel F. Pupo Nogueira
2004 ◽  
Vol 270 (1-2) ◽  
pp. 201-208 ◽  
Author(s):  
Stéphanie Lambert ◽  
Benoı̂t Heinrichs ◽  
Alain Brasseur ◽  
André Rulmont ◽  
Jean-Paul Pirard

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257777
Author(s):  
Anuja Tripathi ◽  
Kenneth D. Harris ◽  
Anastasia L. Elias

Nitrogen-functionalization is an effective means of improving the catalytic performances of nanozymes. In the present work, plasma-assisted nitrogen modification of nanocolumnar Ni GLAD films was performed using an ammonia plasma, resulting in an improvement in the peroxidase-like catalytic performance of the porous, nanostructured Ni films. The plasma-treated nanozymes were characterized by TEM, SEM, XRD, and XPS, revealing a nitrogen-rich surface composition. Increased surface wettability was observed after ammonia plasma treatment, and the resulting nitrogen-functionalized Ni GLAD films presented dramatically enhanced peroxidase-like catalytic activity. The optimal time for plasma treatment was determined to be 120 s; when used to catalyze the oxidation of the colorimetric substrate TMB in the presence of H2O2, Ni films subjected to 120 s of plasma treatment yielded a much higher maximum reaction velocity (3.7⊆10−8 M/s vs. 2.3⊆10−8 M/s) and lower Michaelis-Menten coefficient (0.17 mM vs. 0.23 mM) than pristine Ni films with the same morphology. Additionally, we demonstrate the application of the nanozyme in a gravity-driven, continuous catalytic reaction device. Such a controllable plasma treatment strategy may open a new door toward surface-functionalized nanozymes with improved catalytic performance and potential applications in flow-driven point-of-care devices.


2002 ◽  
Vol 106 (29) ◽  
pp. 7290-7294 ◽  
Author(s):  
E. Charles H. Sykes ◽  
Mintcho S. Tikhov ◽  
Richard M. Lambert

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Katarzyna Winiarska ◽  
Roman Klimkiewicz ◽  
Włodzimierz Tylus ◽  
Agnieszka Sobianowska-Turek ◽  
Juliusz Winiarski ◽  
...  

The catalytic activity of the Mn-Zn ferrites obtained by chemical methods from a solution after acid leaching of waste Zn-C and Zn-Mn batteries was studied. Precursors of metal ions (Fe, Mn, and Zn) were obtained using different precipitating agents ((NH4)2C2O4, Na2CO3, and NaOH), and then, the combustion route was used to prepare catalytically active nanocrystalline ferrites. The obtained ferrite catalysts differ in terms of microstructure, the number of acid and base sites, and the surface composition depending on the ion precursor used in the combustion process. All prepared materials were catalytically active in the butan-1-ol conversion test. Depending on the ion precursor applied in the combustion process, a selective catalyst towards aldehyde (carbonate precursor) or ketone (hydroxide precursor) formation can be obtained. Furthermore, the catalyst prepared from the hydroxide precursor exhibits the highest catalytic activity in the n-butanol test (nearly 100% conversion under the experiment conditions).


2016 ◽  
Vol 5 (2) ◽  
pp. 39 ◽  
Author(s):  
H. Romar ◽  
A. H. Lillebo ◽  
P. Tynjala ◽  
T. Hu ◽  
A. Holmen ◽  
...  

<p class="1Body">Effects of Ru and Re promoters on Co-CoO<sub>x </sub>catalysts supported on γ-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> and SiC were investigated to improve the understanding of the role of promoters of the active phase of Co-CoO<sub>x</sub>-Ru and Co-CoO<sub>x</sub>-Re. The influence of promoter addition on the composition and activity of the catalysts was characterized by several methods, such as H<sub>2</sub>-TPR, XPS, chemisorption and TEM. Furthermore, the role of support and metal-support interaction was especially studied and different support materials were compared.</p><p class="1Body">Based on the results, addition of promoter metals (Ru or Re) will most likely improve catalytic activity of Co/γ-Al<sub>2</sub>O<sub>3</sub>, Co/TiO<sub>2</sub> and Co/SiC catalysts by increasing the active metal surface available for chemical reaction and by decreasing the size of the metallic nanoparticles. These changes in the catalytic activity were also associated with the changes in the ratio of metal and metal oxide phases in the surface composition as observed by XPS. Promoter metals also decreased the reduction temperatures needed for the reduction of Co<sub>3</sub>O<sub>4</sub> to CoO and further to metallic cobalt. Significant decrease in reduction temperature was observed especially when ruthenium was used as the promoter.</p>


Author(s):  
Kh. M. Minachev ◽  
E. S. Shpiro ◽  
I. V. Mishin ◽  
T. Matkhe' ◽  
G. V. Antoshin

2005 ◽  
Vol 19 (15n17) ◽  
pp. 2333-2338 ◽  
Author(s):  
V. P. PETRANOVSKII ◽  
A. N. PESTRYAKOV ◽  
L. K. KAZANTSEVA ◽  
F. F. CASTILLON BARRAZA ◽  
M. H. FARÍAS

Copper catalysts for complete oxidation of hydrocarbons supported on natural zeolites of different structure and origin were prepared by ion-exchange procedure. The catalytic experiments demonstrate that the temperature of beginning of hydrocarbons conversion is in the range of 170-300 °C, depending on the composition of the catalyst. The complete conversion can be observed for both zeolites, depending (probably) on Si/Al ratio of the zeolite matrix. Different states of the copper have been identified by the methods of UV-VIS and XPS spectroscopies and TPR by hydrogen. Whereas no changes in XRD and 27 Al MAS NMR was observed under condition of catalytic runs, that supports conclusion about stability of bulk material, XPS spectroscopy reveals significant altering in surface composition under different treatments due to appearance of complicated nano-species of copper, which are responsible for catalytic activity.


1965 ◽  
Vol 68 (10) ◽  
pp. 1827-1831
Author(s):  
Fumio NOZAKI ◽  
Toshio SUKENO ◽  
Masahiro KOBAYASHI ◽  
Kiyoshi MORIKAWA

Sign in / Sign up

Export Citation Format

Share Document