Manganese-based oxide layer with oxygen vacancies to enable fast ion/charge mobility for durable LiNi0.8Co0.1Mn0.1O2 cathode

Ionics ◽  
2021 ◽  
Author(s):  
Ren-Ping Guo ◽  
Ji-Zhou Kong ◽  
Peng Xu ◽  
Abdoul Malik Bakari ◽  
Qian-Zhi Wang ◽  
...  
2020 ◽  
Vol 49 (11) ◽  
pp. 6270-6275
Author(s):  
A. Joseph ◽  
G. Lilienkamp ◽  
T. F. Wietler ◽  
H. J. Osten

Abstract The effects of nitrogen incorporation by high-dose ion implantation in epitaxial gadolinium oxide (Gd2O3) films on Si (111) followed by annealing have been investigated. The nitrogen content in the oxide layer was changed by altering the implantation dose. The presence of nitrogen incorporation on the Gd2O3 layer was studied using Auger electron spectroscopy. Nitrogen incorporation is believed to occur by filling the oxygen vacancies or by removing hydroxyl group ions in Gd2O3. A maximum concentration of 11% was obtained for nitrogen in the interface between the silicon dioxide and Gd2O3 layer and the implanted areas of the Gd2O3 oxide layer after sputter depth profiling. The nitrogen distribution in the layer was found to be non-uniform. Nitrogen incorporation sharply reduced the leakage current and effectively suppressed the hysteresis. Leakage current was two orders lower compared with the pure Gd2O3.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Author(s):  
T. A. Epicier ◽  
G. Thomas

Mullite is an aluminium-silicate mineral of current interest since it is a potential candidate for high temperature applications in the ceramic materials field.In the present work, conditions under which the structure of mullite can be optimally imaged by means of High Resolution Electron Microscopy (HREM) have been investigated. Special reference is made to the Atomic Resolution Microscope at Berkeley which allows real space information up to ≈ 0.17 nm to be directly transferred; numerous multislice calculations (conducted with the CEMPAS programs) as well as extensive experimental through-focus series taken from a commercial “3:2” mullite at 800 kV clearly show that a resolution of at least 0.19 nm is required if one wants to get a straightforward confirmation of atomic models of mullite, which is known to undergo non-stoichiometry associated with the presence of oxygen vacancies.Indeed the composition of mullite ranges from approximatively 3Al2O3-2SiO2 (referred here as 3:2-mullite) to 2Al2O3-1SiO2, and its structure is still the subject of refinements (see, for example, refs. 4, 5, 6).


1979 ◽  
Vol 40 (C1) ◽  
pp. C1-324-C1-326
Author(s):  
D. A. Church ◽  
C. S. Lee
Keyword(s):  

1980 ◽  
Vol 41 (C6) ◽  
pp. C6-17-C6-19 ◽  
Author(s):  
K. Funke ◽  
A. Höch ◽  
R. E. Lechner

2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
H. Águas ◽  
L. Pereira ◽  
A. Goullet ◽  
R. Silva ◽  
E. Fortunato ◽  
...  

AbstractIn this work we present results of a study performed on MIS diodes with the following structure: substrate (glass) / Cr (2000Å) / a-Si:H n+ (400Å) / a-Si:H i (5500Å) / oxide (0-40Å) / Au (100Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106)and signal to noise (S/N) ratio (1×107 at -1V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO2 by plasma of HMDSO (hexamethyldisiloxane), but in the case of deposited oxides, the breakdown voltage is higher, 30V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ± 1V, but is relevant when high breakdown voltages are required.


2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


Sign in / Sign up

Export Citation Format

Share Document