Effect of the heat-treatment temperature on the mechanical properties and microstructural evolution of cold-rolled twinning-induced plasticity steel

2015 ◽  
Vol 30 (2) ◽  
pp. 386-391 ◽  
Author(s):  
Dazhao Li ◽  
Yinghui Wei ◽  
Jinlu Song ◽  
Lifeng Hou
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 255
Author(s):  
Dohyung Kim ◽  
Kinam Hong ◽  
Jeesoo Sim ◽  
Junghoon Lee ◽  
Wookjin Lee

In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500–900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1403 ◽  
Author(s):  
Lifen Tong ◽  
Xiting Lei ◽  
Guangyao Yang ◽  
Xiaobo Liu

A novel poly(arylene ether nitrile) terminated with hydroxyl groups (PEN–OH) was synthesized successfully. The effects of heat-treatment temperature on the thermal properties, mechanical properties, and dielectric properties of the PEN–OH films were studied in detail. Due to the cross-linking reaction occurring, at high temperature, among the nitrile groups on the side of the PEN–OH main chain to form a structurally stable triazine ring, the structure of materials changes from a linear structure to a bulk structure. Thus, the thermal properties and mechanical properties were improved. In addition, the occurrence of cross-linking reactions can reduce the polar groups in the material, leading to the decrease of dielectric constant. As the heat-treatment temperature increased, the glass-transition temperature increased from 180.6 °C to 203.6 °C, and the dielectric constant decreased from 3.4 to 2.8 at 1 MHz. Proper temperature heat-treatment could improve the tensile strength, as well as the elongation, at the break of the PEN–OH films. Moreover, because of the excellent adhesive property of PEN–OH to copper foil, a double-layer flexible copper clad laminate (FCCL) without any adhesives based on PEN–OH was prepared by a simple hot-press method, which possessed high peel strength with 1.01 N/mm. Therefore, the PEN–OH has potential applications in the electronic field.


10.30544/293 ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 143-152
Author(s):  
Mohammad Davari ◽  
Mehdi Mansouri Hasan Abadi

In the present study, the effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferritic-martensitic dual-phase steel have been investigated utilizing tensile test, microhardness measurement and microscopic observation. Plain carbon steel sheet with a thickness of 2 mm was heat treated at 760, 780, 800, 820 and 840 °C intercritical temperatures. The results showed that martensite volume fraction (Vm) increases from 32 to 81%with increasing temperature from 760 to 840 °C. The mechanical properties of samples were examined by tensile and microhardness tests. The results revealed that yield strength was increased linearly with the increase in Vm, but the ultimate strength was increased up to 55% Vm and then decreased afterward. Analyzing the work hardening behavior in term of Hollomon equation showed that in samples with less than 55% Vm, the work hardening took place in one stage and the work hardening exponent increased with increasing Vm. More than one stage was observed in the work hardening behavior when Vm was increased. The results of microhardness test showed that microhardness of the martensite is decreased by increase in heat treatment temperature while the ferrite microhardness is nearly constant for all heat-treated samples.


2021 ◽  
Vol 11 (22) ◽  
pp. 10598
Author(s):  
Giulia Stornelli ◽  
Andrea Di Schino ◽  
Silvia Mancini ◽  
Roberto Montanari ◽  
Claudio Testani ◽  
...  

EUROFER97 steel plates for nuclear fusion applications are usually manufactured by hot rolling and subsequent heat treatments: (1) austenitization at 980 °C for 30 min, (2) rapid cooling and (3) tempering at 760 °C for 90 min. An extended experimental campaign was carried out with the scope of improving the strength of the steel without a loss of ductility. Forty groups of samples were prepared by combining cold rolling with five cold reduction ratios (20, 40, 50, 60 and 80%) and heat treatments at eight different temperatures in the range 400–750 °C (steps of 50 °C). This work reports preliminary results regarding the microstructure and mechanical properties of all the cold-rolled samples and the effects of heat treatments on the samples deformed with the greater CR ratio (80%). The strength of deformed samples decreased as heat treatment temperature increased and the change was more pronounced in the samples cold-rolled with greater CR ratios. After heat treatments at temperature up to 600 °C yield stress (YS) and ultimate tensile strength (UTS) of samples deformed with CR ratio of 80% were significantly larger than those of standard EUROFER97 but ductility was lower. On the contrary, the treatment at 650 °C produced a fully recrystallized structure with sub-micrometric grains which guarantees higher strength and comparable ductility. The work demonstrated that EUROFER97 steel can be strengthened without compromising its ductility; the most effective process parameters will be identified by completing the analyses on all the prepared samples.


2015 ◽  
Vol 2015 (3) ◽  
pp. 94-97
Author(s):  
Юлия Гусева ◽  
Yuliya Guseva ◽  
Владимир Сакало ◽  
Vladimir Sakalo ◽  
Татьяна Иншакова ◽  
...  

Tensile tests of specimens made from solid copper M1 had been conducted. Samples were subjected to heat treatment by heating to temperatures of 200 to 900°C and were cooled in water or air. Values of tensile strength and relative residual elongation were defined. The condi-tions under which solid copper acquires the properties of soft copper installed.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1707
Author(s):  
Yutao Zhou ◽  
Shufeng Yang ◽  
Jingshe Li ◽  
Wei Liu ◽  
Anping Dong

The characteristics and formation mechanisms of intragranular acicular ferrite (IAF) in steel with MgO nanoparticle additions were systematically investigated for different isothermal heat-treatment temperatures, and its influence on mechanical properties was also clarified. The results indicate that the inclusions were finely dispersed and refined after adding MgO nanoparticles. In addition, with decreasing heat-treatment temperature, the microstructure changed from grain boundary ferrite (GBF) and polygonal ferrite (PF) to intragranular acicular ferrite. Moreover, the steel with MgO additions had excellent mechanical properties in the temperature range of 973 to 823 K and an average Charpy absorbed energies value of around 174 J at 873 K due to the significant refinement of the microstructure and nucleation of intragranular acicular ferrite.


Sign in / Sign up

Export Citation Format

Share Document