scholarly journals Shape Memory and Mechanical Properties of Cold Rolled and Annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C Alloy

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 255
Author(s):  
Dohyung Kim ◽  
Kinam Hong ◽  
Jeesoo Sim ◽  
Junghoon Lee ◽  
Wookjin Lee

In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500–900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.

2020 ◽  
Vol 897 ◽  
pp. 35-40
Author(s):  
Thanate Assawakawintip ◽  
Rochaya Chintavalakorn ◽  
Peerapong Santiwong ◽  
Anak Khantachawana

To investigate the effects of different temperatures for heat treatment of custom-made NiTi closed coil springs. NiTi closed coil springs (50.8% Ni-49.2%Ti) were manually fabricated around a 0.9mm diameter mandrel and heat treated at temperatures of 400°C, 450°C, and 500°C for 20 minutes. The outer diameter of each specimen was measured to determine the effect of heat treatment temperature on spring geometry. Tensile tests were carried out to measure the force levels at 3, 6, 9, and 12 mm of spring extension. Non-parametric statistical analyses were done to assess and compare the effects of different temperatures of heat treatment on the custom-made orthodontic closed coil springs. Heat treatment at lower temperatures produced larger outer coil diameters than at higher temperatures. Raising the temperature of heat treatment produced significant increases in force levels by 13-18 g especially between 400°C and 500°C at spring extensions of 3, 6 and 9 mm. The highest superelastic ratio of 5.44 was found in the NiTi coil springs that were heat treatment at 500°C for 20 minutes which signifies superelastic tendencies. The mechanical properties of NiTi closed coil springs are influenced by the temperature of heat treatment. The NiTi closed coil springs that were heat treated at 500°C for 20 minutes produce appropriate force levels to display a superelastic tendency for orthodontic use.


2016 ◽  
Vol 97 ◽  
pp. 141-146 ◽  
Author(s):  
Taywin Buasri ◽  
Hyunbo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

The effect of heat treatment temperature from 1173 K to 1373 K for 3.6 ks on mechanical and superelastic properties of an Ni-free Au-51Ti-18Co alloy (mol%) was investigated. The stress for inducing martensitic transformation (SIMT) and the critical stress for slip deformation (CSS) slightly decrease with increasing the heat–treatment temperature. Regardless of heat–treatment temperature, good superelasticity was definitely recognized with the maximum shape recovery ratio up to 95 % and 4 % superelastic shape recovery strain. As the mentioned reasons, the Au-51Ti-18Co alloy is promising for practical biomedical applications.


10.30544/293 ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 143-152
Author(s):  
Mohammad Davari ◽  
Mehdi Mansouri Hasan Abadi

In the present study, the effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferritic-martensitic dual-phase steel have been investigated utilizing tensile test, microhardness measurement and microscopic observation. Plain carbon steel sheet with a thickness of 2 mm was heat treated at 760, 780, 800, 820 and 840 °C intercritical temperatures. The results showed that martensite volume fraction (Vm) increases from 32 to 81%with increasing temperature from 760 to 840 °C. The mechanical properties of samples were examined by tensile and microhardness tests. The results revealed that yield strength was increased linearly with the increase in Vm, but the ultimate strength was increased up to 55% Vm and then decreased afterward. Analyzing the work hardening behavior in term of Hollomon equation showed that in samples with less than 55% Vm, the work hardening took place in one stage and the work hardening exponent increased with increasing Vm. More than one stage was observed in the work hardening behavior when Vm was increased. The results of microhardness test showed that microhardness of the martensite is decreased by increase in heat treatment temperature while the ferrite microhardness is nearly constant for all heat-treated samples.


2021 ◽  
Vol 11 (22) ◽  
pp. 10598
Author(s):  
Giulia Stornelli ◽  
Andrea Di Schino ◽  
Silvia Mancini ◽  
Roberto Montanari ◽  
Claudio Testani ◽  
...  

EUROFER97 steel plates for nuclear fusion applications are usually manufactured by hot rolling and subsequent heat treatments: (1) austenitization at 980 °C for 30 min, (2) rapid cooling and (3) tempering at 760 °C for 90 min. An extended experimental campaign was carried out with the scope of improving the strength of the steel without a loss of ductility. Forty groups of samples were prepared by combining cold rolling with five cold reduction ratios (20, 40, 50, 60 and 80%) and heat treatments at eight different temperatures in the range 400–750 °C (steps of 50 °C). This work reports preliminary results regarding the microstructure and mechanical properties of all the cold-rolled samples and the effects of heat treatments on the samples deformed with the greater CR ratio (80%). The strength of deformed samples decreased as heat treatment temperature increased and the change was more pronounced in the samples cold-rolled with greater CR ratios. After heat treatments at temperature up to 600 °C yield stress (YS) and ultimate tensile strength (UTS) of samples deformed with CR ratio of 80% were significantly larger than those of standard EUROFER97 but ductility was lower. On the contrary, the treatment at 650 °C produced a fully recrystallized structure with sub-micrometric grains which guarantees higher strength and comparable ductility. The work demonstrated that EUROFER97 steel can be strengthened without compromising its ductility; the most effective process parameters will be identified by completing the analyses on all the prepared samples.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 753 ◽  
Author(s):  
Kanwal Chadha ◽  
Yuan Tian ◽  
John Spray ◽  
Clodualdo Aranas

In this work, the microstructural features and mechanical properties of an additively manufactured 316L stainless steel have been determined. Three types of samples were characterized: (i) as printed (AP), (ii) annealing heat treated (AHT), and (iii) hot isostatic pressed and annealing heat treated (HIP + AHT). Microstructural analysis reveals that the AP sample formed melt pool boundaries with nano-scale cellular structures. These structures disappeared after annealing heat treatment and hot isostatic pressing. The AP and AHT samples have similar grain morphologies; however, the latter has a lower dislocation density and contains precipitates. Conversely, the HIP + AHT sample displays polygon-shaped grains with twin structures; a completely different morphology compared to the first two samples. Optical micrography reveals that the application of hot isostatic pressing reduces the porosity generated after laser processing. The tensile strengths of all the samples are comparable (about 600 MPa); however, the elongation of the HIP + AHT sample (48%) was superior to that of other two samples. The enhanced ductility of the HIP + AHT sample, however, resulted in lower yield strength. Based on these findings, annealing heat treatment after hot isostatic pressing was found to improve the ductility of as-printed 316L stainless steel by as much as 130%, without sacrificing tensile strength, but the sample may have a reduced (40%) yield strength. The tensile strength determined here has been shown to be higher than that of the hot isostatic pressed, additively manufactured 316L stainless steel available from the literature.


2015 ◽  
Vol 727-728 ◽  
pp. 103-106 ◽  
Author(s):  
Li Yuan Sheng ◽  
Fang Yang ◽  
Ting Fei Xi

In the present paper, the Ti-15Ni-6Al-2Zr alloy is fabricated and heat treated at different temperatures. Its microstructure and morphology of Ti2Ni phase are investigated by SEM and TEM. The results reveal that the Ti-15Ni-6Al-2Zr alloy is composed of eutectoid and eutectic microstructure, which possesses fine Ti2Ni fiber in eutectoid region and fine α-Ti phase in eutectic region. With the increase of heat treatment temperature, the amount of α-Ti and Ti2Ni phases decrease gradually. When the heat treatment temperature is higher than 900°C, almost no α-Ti phase is left. The transformation temperature of α-Ti phase to β-Ti phase is about 850°C, and the transformation of α-Ti phase promotes the decrease of Ti2Ni phase. During the heat treatment, the Ti2Ni fiber phase experiences the refining, fragmentation, coarsening and granulating.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


2013 ◽  
Vol 747-748 ◽  
pp. 497-501
Author(s):  
Na Liu ◽  
Zhou Li ◽  
Guo Qing Zhang ◽  
Hua Yuan ◽  
Wen Yong Xu ◽  
...  

Powder metallurgical TiAl alloy was fabricated by gas atomization powders, and the effect of heat treatment temperature on the microstructure evolution and room tensile properties of PM TiAl alloy was investigated. The uniform fine duplex microstructure was formed in PM TiAl based alloy after being heat treated at 1250/2h followed by furnace cooling (FC)+ 900/6h (FC). When the first step heat treatment temperature was improved to 1360/1h, the near lamellar microstructure was achieved. The ductility of the alloy after heat treatment improved markedly to 1.2% and 0.6%, but the tensile strength decreased to 570MPa and 600MPa compared to 655MPa of as-HIP TiAl alloy. Post heat treatment at the higher temperature in the alpha plus gamma field would regenerate thermally induced porosity (TIP).


2015 ◽  
Vol 1113 ◽  
pp. 56-61
Author(s):  
Nor Azrina Resali ◽  
Koay Mei Hyie ◽  
M.N. Berhan ◽  
C.M. Mardziah

In this research, heat treatment is the final finishing process applied on nanocrystalline CoNiFe to improve microstructure for good hardness property. Nanocrystalline CoNiFe has been synthesized using the electrodeposition method. This study investigated the effect of heat treatment at 500°C, 600°C, 700°C and 800°C on electrodeposited nanocrystalline CoNiFe. The heat treatment process was performed in the tube furnace with flowing Argon gas. By changing the heat treatment temperature, physical properties such as phase and crystallographic structure, surface morphology, grain size and hardness of nanocrystalline CoNiFe was studied. The nanocrystalline CoNiFe phase revealed the Face Centered Cubic (FCC) and Body Centered Cubic (BCC) crystal structure. FESEM micrographs showed that the grain sizes of the coatings were in the range of 78.76 nm to 132 nm. Dendrite shape was found in the microstructure of nanocrystalline CoNiFe. The nanocrystalline CoNiFe prepared in heat treatment temperature of 700°C, achieved the highest hardness of 449 HVN. The surface roughness of nanocrystalline CoNiFe heated at 700°C was found to be smaller than other temperatures.


Sign in / Sign up

Export Citation Format

Share Document