scholarly journals Climate change in rural Pakistan: evidence and experiences from a people-centered perspective

Author(s):  
Amber Ajani ◽  
Kees van der Geest

AbstractPakistan is home to a wide range of geographical landscapes, each of which faces different climate change impacts and challenges. This article presents findings from a National Geographic Society funded project, which employed a people-centered, narratives-based approach to study climate impacts and adaptation strategies of people in 19 rural study sites in four provinces of Pakistan (N = 108). The study looked at six climate-related stressors—changes in weather patterns, floods, Glacial Lake Outburst Floods, drought, heat waves, and sea-level rise—in the coastal areas of Sindh, the desert of Thar, the plains of Punjab, and the mountains of Hunza, Gilgit, and Chitral. Speaking to people at these frontlines of climate change revealed much about climate suffering and trauma. Not only is the suffering induced by losses and damages to property and livelihood, but climate impacts also take a heavy toll on people’s psycho-social wellbeing, particularly when they are displaced from their homes. The findings further demonstrate that people try to adapt in various ways, for instance by altering their agricultural practices, but they face severe barriers to effective adaptation action. Understanding people’s perceptions of climate change and incorporating their recommendations in adaptation planning can help policy-makers develop a more participatory, inclusive, and holistic climate resilience framework for the future.


Author(s):  
U. Rashid Sumaila

This chapter describes the literature of adaptation law in the context of international ocean governance. Adaptation law consists of rules aimed at minimizing the social costs associated with human response to climate impacts. These can be used to shape the behaviour of private actors or public institutions. The law sometimes might provide incentives to make enterprises more resilient as it makes capital unnecessarily stranded during climate change. In order to illustrate the challenges of implementation in the ocean context, the chapter focuses on two examples: international fisheries and ‘mari-engineering’. International fisheries represent ongoing ocean use and regulated by a well-developed body of international law. Due to the wide range of possible climate impacts and adaptive responses, proactive changes to existing fisheries rules in anticipation of climate change fit into the category of general adaptation law, while mari-engineering is engineering the seas to slow or halt climate change impacts.



Author(s):  
Jennifer A. Curtis ◽  
Lorraine E. Flint ◽  
Michelle A. Stern ◽  
Jack Lewis ◽  
Randy D. Klein

AbstractIn Humboldt Bay, tectonic subsidence exacerbates sea-level rise (SLR). To build surface elevations and to keep pace with SLR, the sediment demand created by subsidence and SLR must be balanced by an adequate sediment supply. This study used an ensemble of plausible future scenarios to predict potential climate change impacts on suspended-sediment discharge (Qss) from fluvial sources. Streamflow was simulated using a deterministic water-balance model, and Qss was computed using statistical sediment-transport models. Changes relative to a baseline period (1981–2010) were used to assess climate impacts. For local basins that discharge directly to the bay, the ensemble means projected increases in Qss of 27% for the mid-century (2040–2069) and 58% for the end-of-century (2070–2099). For the Eel River, a regional sediment source that discharges sediment-laden plumes to the coastal margin, the ensemble means projected increases in Qss of 53% for the mid-century and 99% for the end-of-century. Climate projections of increased precipitation and streamflow produced amplified increases in the regional sediment supply that may partially or wholly mitigate sediment demand caused by the combined effects of subsidence and SLR. This finding has important implications for coastal resiliency. Coastal regions with an increasing sediment supply may be more resilient to SLR. In a broader context, an increasing sediment supply from fluvial sources has global relevance for communities threatened by SLR that are increasingly building resiliency to SLR using sediment-based solutions that include regional sediment management, beneficial reuse strategies, and marsh restoration.



2019 ◽  
Author(s):  
Kirsti Hakala ◽  
Nans Addor ◽  
Thibault Gobbe ◽  
Johann Ruffieux ◽  
Jan Seibert

Abstract. Anticipating and adapting to climate change impacts on water resources requires a detailed understanding of future hydroclimatic changes and of stakeholders' vulnerability to these changes. However, climate change impact studies are often conducted at a spatial scale that is too coarse to capture the specificity of individual catchments, and more importantly, the changes they focus on are not necessarily the changes most critical to stakeholders. While recent studies have combined hydrological and electricity market modeling, they tend to aggregate all climate impacts by focusing solely on reservoir profitability, and thereby provide limited insights into climate change adaptation. Here, we collaborated with Groupe E, a hydropower company operating several reservoirs in the Swiss pre-Alps and worked with them to produce hydroclimatic projections tailored to support their upcoming water concession negotiations. We started by identifying the vulnerabilities of their activities to climate change and then together chose streamflow and energy indices to characterize the associated risks. We provided Groupe E with figures showing the projected climate change impacts, which were refined over several meetings. The selected indices enabled us to simultaneously assess a variety of impacts induced by changes on i) the seasonal water volume distribution, ii) low flows, iii) high flows, and iv) energy demand. We were hence able to identify key opportunities (e.g., the future increase of reservoir inflow in winter, when electricity prices are historically high) and risks (e.g., the expected increase of consecutive days of low flows in summer and fall, which is likely to make it more difficult to meet residual flow requirements). This study highlights that the hydrological opportunities and risks associated with reservoir management in a changing climate depend on a range of factors beyond those covered by traditional impact studies. We also illustrate the importance of identifying stakeholder needs and using them to inform the production of climate impact projections. Our user-centered approach is transferable to other impact modeling studies, in the field of water resources and beyond.



2020 ◽  
Author(s):  

This report aims to provide an overview of the gender and climate resilience nexus in the Caribbean and provide gender-inclusive recommendations for climate resilience programmes in the region. This report has been developed within the context of the Caribbean Pilot Programme for Climate Resilience (PPCR) to support gender mainstreaming into the regional and national programme activities. Specifically, the report seeks to: Understand how men and women participate in climate resilience programmes and how gender inequalities are exacerbated by climate change impacts in the sectors covered by the PPCR. Identify institutional arrangements and good practices for integrating gender equality concerns in Caribbean climate resilience programmes. The audience for this report is PPCR stakeholders (e.g. executing agencies, implementing partners, Inter-American Development Bank (IDB) country office teams) and project teams in the Caribbean seeking to mainstream gender into climate resilience projects in the future.



2021 ◽  
Author(s):  
Christian Huggel ◽  
Simon K. Allen ◽  
Indra D. Bhatt ◽  
Rithodi Chakraborty ◽  
Fabian Drenkhan ◽  
...  

<p>Mountains cover about a quarter of the Earth’s land surface and are home to or serve a substantial fraction of the global population with essential ecosystem services, in particular water, food, energy, and recreation. While mountain systems are expected to be highly exposed to climate change, we currently lack a comprehensive global picture of the extent to which environmental and human systems in mountain regions have been affected by recent anthropogenic climate change.</p><p>Here we undertake an unprecedented effort to detect observed impacts of climate change in mountains regions across all continents. We follow the approach implemented in the IPCC 5<sup>th</sup> Assessment Report (AR5) and follow-up research where we consider whether a natural or human system has changed beyond its baseline behavior in the absence of climate change, and then attribute the observed change to different drivers, including anthropogenic climate change. We apply an extensive review of peer-reviewed and grey literature and identify more than 300 samples of impacts (aggregate and case studies). We show that a wide range of natural and human systems in mountains have been affected by climate change, including the cryosphere, the water cycle and water resources, terrestrial and aquatic ecosystems, energy production, infrastructure, agriculture, health, migration, tourism, community and cultural values and disasters. Our assessment documents that climate change impacts are observed in mountain regions on all continents. However, the explicit distinction of different drivers contributing to or determining an observed change is often highly challenging; particularly due to widespread data scarcity in mountain regions. In that context, we were also able to document a high amount of impacts in previously under-reported continents such as Africa and South America. In particular, we have been able to include a substantial number of place-based insights from local/indigenous communities representing important alternative worldviews.</p><p>The role of human influence in observed climate changes is evaluated using data from multiple gridded observational climate products and global climate models. We find that anthropogenic climate change has a clear and discernable fingerprint in changing natural and human mountain systems across the globe. In the cryosphere, ecosystems, water resources and tourism the contribution of anthropogenic climate change to observed changes is significant, showing the sensitivity of these systems to current and future climate change. Furthermore, our analysis reveals the need to consider the plurality of knowledge systems through which climate change impacts are being understood in mountain regions. Such attempts at inclusivity, which addresses issues of representation and justice, should be deemed necessary in exploring climate change impacts.</p>



Author(s):  
Fonna Forman ◽  
Veerabhadran Ramanathan

With unchecked emissions of pollutants, global warming is projected to increase to 1.50C within 15 years; to 20C within 35 years and 40C by 2100. These projections are central values with a small (<5%) probability that warming by 2100 can exceed 60C with potentially catastrophic impacts on every human being, living and yet unborn. Climate is already changing in perceptible ways through floods, droughts, wildfires, heat waves and sea level rise, displacing communities and catalyzing migration. Climate migration describes the voluntary and forced movement of people within and across habitats due to changes in climate. While estimates vary from 25 million to as many as one billion climate change migrants by 2050, achieving reliable quantitative estimates of future climate migration faces forbidding obstacles due to: 1) a wide range of projected warming due to uncertainties in climate feedbacks; 2) the lack of a settled definition for climate migration; and 3) the causal complexity of migration due to variability in non-environmental factors such as bioregion, culture, economics, politics and individual factors. But waiting for reliable estimates this creates unacceptable ethical risks. Therefore, we advocate a probabilistic approach to climate migration that accounts for both central and low probability warming projections as the only ethical response to the unfolding crisis. We conclude that in the absence of drastic mitigation actions, climate change-induced mass migration can become a major threat during the latter half of this century.



Author(s):  
Mark Maslin

What is dangerous climate change? What is our coping range? ‘Climate change impacts’ assesses the potential effects of climate change on the natural environment as well as on human societies and our economies. Climate change impacts will increase significantly as global temperature rises. Climate change will affect the return period and severity of floods, droughts, heat waves, and storms. Coastal cities and towns will be especially vulnerable as sea-level rise will worsen the effects of floods and storm surges. Water and food security and public health will become the most important problems facing all countries. Climate change also threatens global biodiversity and the well being of billions of people.



2019 ◽  
Vol 11 (13) ◽  
pp. 3599 ◽  
Author(s):  
Lane ◽  
Murdock ◽  
Genskow ◽  
Betz ◽  
Chatrchyan

Climate change impacts on agriculture have been intensifying in the Northeastern and Midwestern United States. Few empirical studies have considered how dairy farmers and/or their advisors are interpreting and responding to climate impacts, risks, and opportunities in these regions. This study investigates dairy farmer and advisor views and decisions related to climate change using data from seven farmer and advisor focus groups conducted in New York and Wisconsin. The study examined how farmers and advisors perceived climate impacts on dairy farms, the practices they are adopting, and how perceived risks and vulnerability affect farmers’ decision making related to adaptation strategies. Although dairy farmers articulated concern regarding climate impacts, other business pressures, such as profitability, market conditions, government regulations, and labor availability were often more critical issues that affected their decision making. Personal experience with extreme weather and seasonal changes affected decision making. The findings from this study provide improved understanding of farmers’ needs and priorities, which can help guide land-grant researchers, Extension, and policymakers in their efforts to develop and coordinate a comprehensive strategy to address climate change impacts on dairy in the Northeast and the Midwest US.



Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ali Raza ◽  
Ali Razzaq ◽  
Sundas Mehmood ◽  
Xiling Zou ◽  
Xuekun Zhang ◽  
...  

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.



2008 ◽  
Vol 8 (16) ◽  
pp. 4621-4639 ◽  
Author(s):  
V. Grewe ◽  
A. Stenke

Abstract. Climate change is a challenge to society and to cope with requires assessment tools which are suitable to evaluate new technology options with respect to their impact on global climate. Here we present AirClim, a model which comprises a linearisation of atmospheric processes from the emission to radiative forcing, resulting in an estimate in near surface temperature change, which is presumed to be a reasonable indicator for climate change. The model is designed to be applicable to aircraft technology, i.e. the climate agents CO2, H2O, CH4 and O3 (latter two resulting from NOx-emissions) and contrails are taken into account. AirClim combines a number of precalculated atmospheric data with aircraft emission data to obtain the temporal evolution of atmospheric concentration changes, radiative forcing and temperature changes. These precalculated data are derived from 25 steady-state simulations for the year 2050 with the climate-chemistry model E39/C, prescribing normalised emissions of nitrogen oxides and water vapour at various atmospheric regions. The results show that strongest climate impacts (year 2100) from ozone changes occur for emissions in the tropical upper troposphere (60 mW/m2; 80 mK for 1 TgN/year emitted) and from methane changes from emissions in the middle tropical troposphere (−2.7% change in methane lifetime; –30 mK per TgN/year). For short-lived species (e.g. ozone, water vapour, methane) individual perturbation lifetimes are derived depending on the region of emission. A comparison of this linearisation approach with results from a comprehensive climate-chemistry model shows reasonable agreement with respect to concentration changes, radiative forcing, and temperature changes. For example, the total impact of a supersonic fleet on radiative forcing (mainly water vapour) is reproduced within 10%. A wide range of application is demonstrated.



Sign in / Sign up

Export Citation Format

Share Document