scholarly journals Hot Processing of Powder Metallurgy and Wrought Ti-6Al-4V Alloy with Large Total Deformation: Physical Modeling and Verification by Rolling

2020 ◽  
Vol 51 (11) ◽  
pp. 5790-5805
Author(s):  
Marek Wojtaszek ◽  
Grzegorz Korpała ◽  
Tomasz Śleboda ◽  
Krystian Zyguła ◽  
Ulrich Prahl

Abstract The influence of the total deformation amount on the microstructure and selected properties of Ti-6Al-4V alloy was determined in this study. Multi-axis compression tests on the MaxStrain module were performed to obtain large strains. Starting material for the research was obtained by the powder metallurgy (PM) route. Plastically processed cast alloy of the same chemical composition as PM alloy was also tested as reference material. The tests were performed with the cooling of samples between successive deformation stages, which allowed for the simulation of the temperature drop occurring during industrial processes. The multi-stage deformation ability of PM Ti-6Al-4V alloy without decohesion was confirmed. It has also been shown that the application of increasing total strain at a controlled temperature changes the samples resulting in the refinement of the microstructure and leads to the fragmentation of lamellae. The results obtained from MaxStrain tests were verified by multi-stage hot-rolling tests. Defect-free products were obtained, whose good quality was confirmed by the microstructural observations as well as by the investigations of their properties. The results of the rolling tests confirmed the possibility of hot processing of Ti-6Al-4V alloy compacts in industrial conditions, applying large total strain.

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Munir Al-Saadi ◽  
Wangzhong Mu ◽  
Christopher N. Hulme-Smith ◽  
Fredrik Sandberg ◽  
Pär G. Jönsson

Alloy 825 is widely used in several industries, but its useful service life is limited by both mechanical properties and corrosion resistance. The current work explores the effect of the addition of magnesium on the recrystallization and mechanical behavior of alloy 825 under hot compression. Compression tests were performed under conditions representative of typical forming processes: temperatures between 1100 and 1250 °C and at strain rates of 0.1–10 s−1 to a true strain of 0.7. Microstructural evolution was characterized by electron backscattered diffraction. Dynamic recrystallization was found to be more prevalent under all test conditions in samples containing magnesium, but not in all cases of conventional alloy 825. The texture direction ⟨101⟩ was the dominant orientation parallel to the longitudinal direction of casting (also the direction in which the samples were compressed) in samples that contained magnesium under all test conditions, but not in any sample that did not contain magnesium. For all deformation conditions, the peak stress was approximately 10% lower in material with the addition of magnesium. Furthermore, the differences in the peak strain between different temperatures are approximately 85% smaller if magnesium is present. The average activation energy for hot deformation was calculated to be 430 kJ mol−1 with the addition of magnesium and 450 kJ mol−1 without magnesium. The average size of dynamically recrystallized grains in both alloys showed a power law relation with the Zener–Hollomon parameter, DD~Z−n, and the exponent of value, n, is found to be 0.12. These results can be used to design optimized compositions and thermomechanical treatments of alloy 825 to maximize the useful service life under current service conditions. No experiments were conducted to investigate the effects of such changes on the service life and such experiments should now be performed.


2004 ◽  
Vol 19 (5) ◽  
pp. 1531-1538 ◽  
Author(s):  
Guangyin Yuan ◽  
Kenji Amiya ◽  
Hidemi Kato ◽  
Akihisa Inoue

The structure and mechanical properties of Mg–Zn–Al–Y base cast alloys containing an icosahedral quasicrystal phase (i-phase) as a main strengthening phase were investigated. Mg–8Zn–4Al–xY base bulk alloys containing the i-phase were prepared by casting into a copper mold at moderate cooling rates. The Y addition was effective for decreasing the size of the i-phase and the increasing the homogeneity of its dispersed state. The mechanical properties examined by compression tests at room temperature were much superior to those of a conventional AZ91 Mg alloy. The creep tests at elevated temperatures indicated a promising high temperature creep resistance of the quasicrystal-reinforced Mg–Zn–Al–Y cast alloy. The strengthening mechanism was also discussed.


2019 ◽  
Vol 50 (11) ◽  
pp. 5314-5323 ◽  
Author(s):  
Krystian Zyguła ◽  
Marek Wojtaszek ◽  
Oleksandr Lypchanskyi ◽  
Tomasz Śleboda ◽  
Grzegorz Korpała ◽  
...  

Abstract The hot deformation behavior of Ti-10V-2Fe-3Al alloy obtained by the powder metallurgy (PM) method was investigated. Material for the research was produced by blending of elemental powders followed by uniaxial hot pressing. Thermomechanical tests of Ti-10V-2Fe-3Al compacts were carried out to determinate the stress-strain relationships at the temperature range of 800 °C to 1000 °C and strain rate between 0.01 and 10 s−1. Based on the dynamic material model (DMM) theory, processing maps at constant strain value were developed using data obtained from hot compression tests. The processing maps were elaborated for the final strain value, which was 0.9, and with flow instability criterion domains applied to it. Two critical regions associated with the flow behavior of the investigated material were revealed. Microstructural changes during hot deformation at various temperatures and strain rates were discussed. The correlation between calculated efficiency of power dissipation, flow instability criterion, and microstructure evolution was determined. The presence of defects was confirmed in regions predicted by the instability maps. The microstructure of the investigated alloy, corresponding to the high efficiency of power dissipation characterized by the occurrence of dynamic recrystallization (DRX) phenomena, was also shown. Additionally, average hardness values in relation to variable process parameters were designated. Based on the conducted studies and analysis, processing windows for Ti-10V-2Fe-3Al alloy compacts were proposed.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5319
Author(s):  
Haofei Zhu ◽  
Jun Liu ◽  
Yi Wu ◽  
Qing Zhang ◽  
Qiwei Shi ◽  
...  

Isothermal compression tests of in-situ TiB2/7050Al composites fabricated by powder metallurgy were performed at 300–460 °C with the strain rate varying from 0.001 s−1 to 1 s−1. The Arrhenius constitutive equation and hot processing map of composites were established, presenting excellent hot workability with low activation energies and broad processing windows. Dramatic discontinuous/continuous dynamic recrystallization (DDRX/CDRX) and grain boundary sliding (GBS) take place in composites during deformation, depending on the Zener-Hollomon parameter (Z) values. It is found that initially uniform TiB2 particles and fine grain structures are beneficial to the DDRX, which is the major softening mechanism in composites at high Z values. With the Z value decreasing, dynamic recovery and CDRX around particles are enhanced, preventing the occurrence of DDRX. In addition, fine grain structures in composites are stable at elevated temperature thanks to the pinning of dense nanoparticles, which triggers the occurrence of GBS and ensures good workability at low Z values.


2004 ◽  
Vol 467-470 ◽  
pp. 429-434 ◽  
Author(s):  
Petra Backx ◽  
Matthew R. Barnett ◽  
Leo Kestens

The mechanical anisotropy of wrought Mg alloys is very high. For example the yield stress of extruded Mg-3Al-1Zn tested in tension can be as high as twice that obtained in compression [1]. To solve the problems this creates for product design it is necessary to understand the sensitivity of texture to processing parameters. Uniaxial compression tests at different temperatures were performed on cylindrical samples of an extruded Mg-3Al-1Zn bar. The texture during this deformation changes from a situation where all crystal c-axes are nearly perpendicular to the sample axis to one where the c-axes are all nearly parallel to this axis. Compression was stopped at different strains to examine the rate of this texture change. Textures were examined using EBSD measurements. It was found that different mechanisms operate depending on the temperature of deformation and that a variety of textures can be created. Also it was seen that an annealing treatment performed after compression has an influence on the texture. Afterwards the samples were subjected to another uniaxial compression test to examine the influence of texture on room temperature properties.


1966 ◽  
Vol 1 (3) ◽  
pp. 216-222 ◽  
Author(s):  
T. C. Hsu

In manufacturing processes involving large strains, the properties of the material undergoing deformation depend not only on the current total strain but on the previous strain path as well. Strain paths are divided into two major types, those in which the principal axes of strain remain fixed with respect to the material (coaxial strain paths), and those in which they rotate (non-coaxial strain paths). The characteristics of the two types of strain path are explained. Particular types of non-coaxial strain path related to practical applications are discussed in further detail and examples based on actual measurements are given.


2004 ◽  
Vol 467-470 ◽  
pp. 1151-1156 ◽  
Author(s):  
Cédric Chauvy ◽  
Pierre Barbéris ◽  
Frank Montheillet

Compression tests were used to simulate simple deformation paths within the upper a-range of Zircaloy-4 (i.e. 500°C-750°C). The mechanical behaviour reveals two different domains : at low temperatures and large strain rates, strain hardening takes place before flow softening, whereas this first stage disappears at lower flow stress levels. Strain rate sensitivity and activation energy were determined for both domains. Dynamic recrystallization was investigated using the Electron BackScattering Diffraction (EBSD) technique. It appears that the mechanism involved here is continuous dynamic recrystallization (CDRX), based on the increasing misorientation of subgrain boundaries and their progressive transformation into large angle boundaries. At low strains (e £ 0.3), CDRX kinetics are similar whatever the deformation conditions, while higher temperatures and lower strain rates promote recrystallization at large strains.


2015 ◽  
Vol 817 ◽  
pp. 615-620 ◽  
Author(s):  
Zheng Guan Lu ◽  
Jie Wu ◽  
Lei Xu ◽  
Yu You Cui ◽  
Rui Yang

Ti-47Al-2Cr-2Nb-0.15B alloy is a typical γ-TiAl alloy, and powder metallurgy (PM) as a near-net shape method was used to prepare it in this article. Clean pre-alloyed powders were prepared by argon gas atomization, and TiAl alloy was prepared by hot isostatic pressing (HIP) at 1150 °C and 1230 °C. However, surface contamination is inevitable due to chemical reactions with the residual O2 in the vacuum chamber during gas atomization, or due to physical adsorption of O2 and H2O during storage of the powder at room temperature. Infrared spectrometry was used to study this process. We found that the adsorption of gases is mainly H2O. The adsorbed gas in powders would deteriorate the performance of PM alloy, so a gas protection environment is suggested. Tensile properties of PM TiAl alloy were compared with as-cast alloy. Results showed that PM TiAl alloy had better strength which also had more fine and uniform microstructure.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3084 ◽  
Author(s):  
Anna Knaislová ◽  
Pavel Novák ◽  
Jaromír Kopeček ◽  
Filip Průša

Melting metallurgy is still the most frequently used and simplest method for the processing of metallic materials. Some of the materials (especially intermetallics) are very difficult to prepare by this method due to the high melting points, poor fluidity, or formation of cracks and pores after casting. This article describes the processing of Ti-Al-Si alloys by arc melting, and shows the microstructure, phase composition, hardness, fracture toughness, and compression tests of these alloys. These results are compared with the same alloys prepared by powder metallurgy by the means of a combination of mechanical alloying and spark plasma sintering. Ti-Al-Si alloys processed by melting metallurgy are characterized by a very coarse structure with central porosity. The phase composition is formed by titanium aluminides and titanium silicides, which are full of cracks. Ti-Al-Si alloys processed by the powder metallurgy route have a relatively homogeneous fine-grained structure with higher hardness. However, these alloys are very brittle. On the other hand, the fracture toughness of arc-melted samples is immeasurable using Palmqvist’s method because the crack is stopped by a large area of titanium aluminide matrix.


Sign in / Sign up

Export Citation Format

Share Document