scholarly journals Detection of functional and structural brain alterations in female schizophrenia using elastic net logistic regression

Author(s):  
Ying Wu ◽  
Ping Ren ◽  
Rong Chen ◽  
Hong Xu ◽  
Jianxing Xu ◽  
...  

AbstractNeuroimaging technique is a powerful tool to characterize the abnormality of brain networks in schizophrenia. However, the neurophysiological substrate of schizophrenia is still unclear. Here we investigated the patterns of brain functional and structural changes in female patients with schizophrenia using elastic net logistic regression analysis of resting-state functional magnetic resonance imaging data. Data from 52 participants (25 female schizophrenia patients and 27 healthy controls) were obtained. Using an elastic net penalty, the brain regions most relevant to schizophrenia pathology were defined in the models using the amplitude of low-frequency fluctuations (ALFF) and gray matter, respectively. The receiver operating characteristic analysis showed reliable classification accuracy with 85.7% in ALFF analysis, and 77.1% in gray matter analysis. Notably, our results showed eight common regions between the ALFF and gray matter analyses, including the Frontal-Inf-Orb-R, Rolandic-Oper-R, Olfactory-R, Angular-L, Precuneus-L, Precuenus-R, Heschl-L, and Temporal-Pole-Mid-R. In addition, the severity of symptoms was found positively associated with the ALFF within the Rolandic-Oper-R and Frontal-Inf-Orb-R. Our findings indicated that elastic net logistic regression could be a useful tool to identify the characteristics of schizophrenia -related brain deterioration, which provides novel insights into schizophrenia diagnosis and prediction.

2021 ◽  
Vol 11 (3) ◽  
pp. 374
Author(s):  
Tomoyo Morita ◽  
Minoru Asada ◽  
Eiichi Naito

Self-consciousness is a personality trait associated with an individual’s concern regarding observable (public) and unobservable (private) aspects of self. Prompted by previous functional magnetic resonance imaging (MRI) studies, we examined possible gray-matter expansions in emotion-related and default mode networks in individuals with higher public or private self-consciousness. One hundred healthy young adults answered the Japanese version of the Self-Consciousness Scale (SCS) questionnaire and underwent structural MRI. A voxel-based morphometry analysis revealed that individuals scoring higher on the public SCS showed expansions of gray matter in the emotion-related regions of the cingulate and insular cortices and in the default mode network of the precuneus and medial prefrontal cortex. In addition, these gray-matter expansions were particularly related to the trait of “concern about being evaluated by others”, which was one of the subfactors constituting public self-consciousness. Conversely, no relationship was observed between gray-matter volume in any brain regions and the private SCS scores. This is the first study showing that the personal trait of concern regarding public aspects of the self may cause long-term substantial structural changes in social brain networks.


2017 ◽  
Author(s):  
David E. Warren ◽  
Matthew J. Sutterer ◽  
Joel Bruss ◽  
Taylor J. Abel ◽  
Andrew Jones ◽  
...  

AbstractFunctional connectivity, as measured by resting-state fMRI, has proven a powerful method for studying brain systems in the context of behavior, development, and disease states. However, the relationship of functional connectivity to structural connectivity remains unclear. If functional connectivity relies on structural connectivity, then anatomical isolation of a brain region should eliminate functional connectivity with other brain regions. We tested this by measuring functional connectivity of the surgically disconnected temporal pole in resection patients (N=5; mean age 37; 2F, 3M). Functional connectivity was evaluated based on coactivation of whole-brain fMRI data with the average low-frequency BOLD signal from disconnected tissue in each patient. In sharp contrast to our prediction, we observed significant functional connectivity between the disconnected temporal pole and remote brain regions in each disconnection case. These findings raise important questions about the neural bases of functional connectivity measures derived from the fMRI BOLD signal.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Zhiyuan Wu ◽  
Lin Cheng ◽  
Guo-Yuan Yang ◽  
Shanbao Tong ◽  
Junfeng Sun ◽  
...  

Objective. Neuroimaging studies revealed the functional reorganization or the structural changes during stroke recovery. However, previous studies did not combine the functional and structural information and the results might be affected by heterogeneous lesion. This study aimed to investigate functional activation-informed structural changes during stroke recovery. Methods. MRI data of twelve stroke patients were collected at four consecutive time points during the first 3 months after stroke onset. Functional activation during finger-tapping task was used to inform the analysis of structural changes of activated brain regions. Correlation between structural changes in motor-related activated brain regions and motor function recovery was estimated. Results. The averaged gray matter volume (aGMV) of contralesional activated brain regions and laterality index of gray matter volume (LIGMV) increased during stroke recovery, and LIGMV was positively correlated with Fugl-Meyer Index (FMI) at initial stage after stroke. The aGMV of bilateral activated brain regions was negatively correlated with FMI during the stroke recovery. Conclusion. This study demonstrated that combining the stroke-induced functional reorganization and structural change provided new insights into the underlying innate plasticity process during stroke recovery. Significance. This study proposed a new approach to integrate functional and structural information for investigating the innate plasticity after stroke.


2021 ◽  
Vol 10 (7) ◽  
pp. 1454
Author(s):  
Benjamin Clemens ◽  
Mikhail Votinov ◽  
Andrei Alexandru Puiu ◽  
Andre Schüppen ◽  
Philippa Hüpen ◽  
...  

The brain structural changes related to gender incongruence (GI) are still poorly understood. Previous studies comparing gray matter volumes (GMV) between cisgender and transgender individuals with GI revealed conflicting results. Leveraging a comprehensive sample of transmen (n = 33), transwomen (n = 33), cismen (n = 24), and ciswomen (n = 25), we employ a region-of-interest (ROI) approach to examine the most frequently reported brain regions showing GMV differences between trans- and cisgender individuals. The primary aim is to replicate previous findings and identify anatomical regions which differ between transgender individuals with GI and cisgender individuals. On the basis of a comprehensive literature search, we selected a set of ROIs (thalamus, putamen, cerebellum, angular gyrus, precentral gyrus) for which differences between cis- and transgender groups have been previously observed. The putamen was the only region showing significant GMV differences between cis- and transgender, across previous studies and the present study. We observed increased GMV in the putamen for transwomen compared to both transmen and ciswomen and for all transgender participants compared to all cisgender participants. Such a pattern of neuroanatomical differences corroborates the large majority of previous studies. This potential replication of previous findings and the known involvement of the putamen in cognitive processes related to body representations and the creation of the own body image indicate the relevance of this region for GI and its potential as a structural biomarker for GI.


2017 ◽  
Vol 44 ◽  
pp. 30-38 ◽  
Author(s):  
G. Dong ◽  
H. Li ◽  
L. Wang ◽  
M.N. Potenza

AbstractAlthough playing of Internet games may lead to Internet gaming disorder (IGD), most game-users do not develop problems and only a relatively small subset experiences IGD. Game playing may have positive health associations, whereas IGD has been repeatedly associated with negative health measures, and it is thus important to understand differences between individuals with IGD, recreational (non-problematic) game use (RGU) and non-/low-frequency game use (NLFGU). Individuals with IGD have shown differences in neural activations from non-gamers, yet few studies have examined neural differences between individuals with IGD, RGU and NLFGU. Eighteen individuals with IGD, 21 with RGU and 19 with NFLGU performed a color-word Stroop task and a guessing task assessing reward/loss processing. Behavioral and functional imaging data were collected and compared between groups. RGU and NLFGU subjects showed lower Stroop effects as compared with those with IGD. RGU subjects as compared to those with IGD demonstrated less frontal cortical activation brain activation during Stroop performance. During the guessing task, RGU subjects showed greater cortico-striatal activations than IGD subjects during processing of winning outcomes and greater frontal brain during processing of losing outcomes. Findings suggest that RGU as compared with IGD subjects show greater executive control and greater activations of brain regions implicated in motivational processes during reward processing and greater cortical activations during loss processing. These findings suggest neural and behavioral features distinguishing RGU from IGD and mechanisms by which RGU may be motivated to play online games frequently yet avoid developing IGD.


2021 ◽  
Vol 11 (12) ◽  
pp. 1580
Author(s):  
Cecilia Grinsvall ◽  
Lukas Van Oudenhove ◽  
Patrick Dupont ◽  
Hyo Jin Ryu ◽  
Maria Ljungberg ◽  
...  

Somatization, defined as the presence of multiple somatic symptoms, frequently occurs in irritable bowel syndrome (IBS) and may constitute the clinical manifestation of a neurobiological sensitization process. Brain imaging data was acquired with T1 weighted 3 tesla MRI, and gray matter morphometry were analyzed using FreeSurfer. We investigated differences in networks of structural covariance, based on graph analysis, between regional gray matter volumes in IBS-related brain regions between IBS patients with high and low somatization levels, and compared them to healthy controls (HCs). When comparing IBS low somatization (N = 31), IBS high somatization (N = 35), and HCs (N = 31), we found: (1) higher centrality and neighbourhood connectivity of prefrontal cortex subregions in IBS high somatization compared to healthy controls; (2) higher centrality of left cerebellum in IBS low somatization compared to both IBS high somatization and healthy controls; (3) higher centrality of the anterior insula in healthy controls compared to both IBS groups, and in IBS low compared to IBS high somatization. The altered structural covariance of prefrontal cortex and anterior insula in IBS high somatization implicates that prefrontal processes may be more important than insular in the neurobiological sensitization process associated with IBS high somatization.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 388.2-389
Author(s):  
A. Rubbert-Roth ◽  
P. K. Bode ◽  
T. Langenegger ◽  
C. Pfofe ◽  
T. Neumann ◽  
...  

Background:Giant cell arteritis (GCA) may affect the aorta and the large aortic branches and lead to dissections and aortic aneurysms. Tocilizumab (TCZ) treatment has the capacity to control aortic inflammation as has been demonstrated by CRP normalization and imaging data. However, limited data are available on the histopathological findings obtained from patients who underwent surgery because of aortic complications during TCZ treatment.Objectives:We report on 5 patients with aortitis who were treated with TCZ and developed aortic complications.Methods:We describe a retrospective case series of patients with GCA treated with TCZ, who presented in our clinic between 2011 and 2019. Three patients underwent surgery. Histopathologic examination was performed in specimen from all of them.Results:Five female patients were diagnosed with GCA (4/5) or Takaysu arteritis (1/5) involving the aorta, all them diagnosed by MR angiography and/or FDG PET CT scan. Three patients (one with aortic aneurysm, one with dissection) underwent surgery after having been treated with TCZ for seven weeks, nine months and four years, respectively. Imaging before surgery showed remission on MRI and/or PET-CT in all cases. At the time of surgery, all patients showed normalized CRP and ESR values. Histopathological evaluation of the aortic wall revealed infiltrates, consisting predominantly of CD3+CD4+ T cells. Enlargement of pre-existing aneuryms was observed in the other two patients 10 weeks and 4 months after discontinuation of TCZ, respectively. Both patients were not eligible for surgical intervention and died during follow-up.Conclusion:Our case series suggests that during treatment with TCZ, regular imaging is necessary in this patient population to detect development of structural changes such as aneurysms or dissections. Despite treatment, residual inflammation might persist which could contribute to eventual aortic complications.Disclosure of Interests:Andrea Rubbert-Roth Consultant of: Abbvie, BMS, Chugai, Pfizer, Roche, Janssen, Lilly, Sanofi, Amgen, Novartis, Peter Karl Bode: None declared, Thomas Langenegger: None declared, Claudia Pfofe: None declared, Thomas Neumann: None declared, Olaf Chan-Hi Kim: None declared, Johannes von Kempis Consultant of: Roche


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tun-Wei Hsu ◽  
Jong-Ling Fuh ◽  
Da-Wei Wang ◽  
Li-Fen Chen ◽  
Chia-Jung Chang ◽  
...  

AbstractDementia is related to the cellular accumulation of β-amyloid plaques, tau aggregates, or α-synuclein aggregates, or to neurotransmitter deficiencies in the dopaminergic and cholinergic pathways. Cellular and neurochemical changes are both involved in dementia pathology. However, the role of dopaminergic and cholinergic networks in metabolic connectivity at different stages of dementia remains unclear. The altered network organisation of the human brain characteristic of many neuropsychiatric and neurodegenerative disorders can be detected using persistent homology network (PHN) analysis and algebraic topology. We used 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging data to construct dopaminergic and cholinergic metabolism networks, and used PHN analysis to track the evolution of these networks in patients with different stages of dementia. The sums of the network distances revealed significant differences between the network connectivity evident in the Alzheimer’s disease and mild cognitive impairment cohorts. A larger distance between brain regions can indicate poorer efficiency in the integration of information. PHN analysis revealed the structural properties of and changes in the dopaminergic and cholinergic metabolism networks in patients with different stages of dementia at a range of thresholds. This method was thus able to identify dysregulation of dopaminergic and cholinergic networks in the pathology of dementia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiao Li ◽  
Jakob Seidlitz ◽  
John Suckling ◽  
Feiyang Fan ◽  
Gong-Jun Ji ◽  
...  

AbstractMajor depressive disorder (MDD) has been shown to be associated with structural abnormalities in a variety of spatially diverse brain regions. However, the correlation between brain structural changes in MDD and gene expression is unclear. Here, we examine the link between brain-wide gene expression and morphometric changes in individuals with MDD, using neuroimaging data from two independent cohorts and a publicly available transcriptomic dataset. Morphometric similarity network (MSN) analysis shows replicable cortical structural differences in individuals with MDD compared to control subjects. Using human brain gene expression data, we observe that the expression of MDD-associated genes spatially correlates with MSN differences. Analysis of cell type-specific signature genes suggests that microglia and neuronal specific transcriptional changes account for most of the observed correlation with MDD-specific MSN differences. Collectively, our findings link molecular and structural changes relevant for MDD.


Sign in / Sign up

Export Citation Format

Share Document